Seed priming alleviated salinity stress during germination and emergence of wheat (Triticum aestivum L.)

被引:51
|
作者
Feghhenabi, Faride [1 ]
Hadi, Hashem [1 ]
Khodaverdiloo, Habib [2 ]
van Genuchten, Martinus Th [3 ,4 ]
机构
[1] Urmia Univ, Dept Plant Prod & Genet, Orumiyeh, Iran
[2] Urmia Univ, Dept Soil Sci, Orumiyeh, Iran
[3] Univ Utrecht, Dept Earth Sci, Utrecht, Netherlands
[4] Sao Paulo State Univ, Ctr Environm Studies, CEA, UNESP, Rio Claro, SP, Brazil
关键词
Potassium silicate; Salinity response functions; Seed priming; Seedling; Emergence; OXIDATIVE STRESS; OSMOTIC-STRESS; SALT TOLERANCE; IMPROVES; SEEDLINGS; SORGHUM; GROWTH; IRRIGATION; METABOLISM; TOMATO;
D O I
10.1016/j.agwat.2020.106022
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Seed priming is known to often alleviate salinity stress during seed emergence and subsequent crop growth. This study compares the effects of salinity stress on the germination and emergence of wheat (Triticum aestivum L.) seeds untreated (control) and primed with ascorbic acid (Asc), potassium silicate (K2SiO3), proline (Pro), spermidine (Spd) and Lake Urmia saline water (LUsw). Saline water from Lake Urmia (Iran) was diluted to produce salinities with electrical conductivities (EC) of 2, 4, 6, 8, 10, 12, 14, 20 dS m(-1), while distilled water (EC similar to 0 dS m(-1)) was used for the control. Two independent sets of experiments were conducted. The first experiments were used to select the most effective concentration of each priming agent based on the final germination percentage (GP) and germination rate (GR). The second set of experiments aimed to analyze the measured data in terms of salinity response functions in order to quantitatively determine the most effective priming agent(s). The first experiments showed that the most effective concentrations of Spd (0.5 mM), Pro (25 mM), K2SiO3 (1.5 mM) and LUsw (100 mg L-1) mitigated the negative impacts of salinity on GR by 32, 18, 17 and 22 %, respectively. The second experiment showed that the Maas and Hoffman (1977) and van Genuchten and Hoffman (1984) salinity response functions provided effective descriptions of seedling and early growth response to salinity stress. Mean values of the salinity threshold (EC*) and the salinity at which a given trait was reduced by 50 percent (EC50) in these functions were 3.4 and 10.8 dS m(-1) for the control, respectively. By comparison, the EC* values for the K2SiO3, Pro, Spd and LUsw primed seeds were 5.3, 4.5, 4.7, and 4.2 dS m(-1), respectively, and the EC50 values were 12.4, 11.4, 11.9, and 9.4 dS m(-1), respectively. The beneficial effects of K2SiO3 on seedling growth were more evident than those of the other priming agents. K2SiO3 had the highest effect on EC* and EC50 of the vitality index (VI), showing increases of 151 and 34 %, respectively. The highest increases of EC* and EC50 for seedling dry weight (72 and 24 %, respectively) were obtained with Spd and K2SiO3. The findings provide much insight on relieving the negative effects of salinity through cost-effective seed priming operations so as to improve the production of wheat under saline conditions.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Wheat (Triticum aestivum L.) Seed Germination under Salt Stress as Influenced by Priming
    Mohammadi, C. R.
    Mozafari, S.
    PHILIPPINE AGRICULTURAL SCIENTIST, 2012, 95 (02) : 146 - 152
  • [2] Mitigation of salinity stress in wheat (Triticum aestivum L.) seedlings through physiological seed enhancements
    Saddiq, Muhammad Sohail
    Iqbal, Shahid
    Afzal, Irfan
    Ibrahim, Amir M. H.
    Bakhtavar, Muhammad A.
    Hafeez, Muhammad B.
    Jahanzaib
    Maqbool, Muhammad Mudassar
    JOURNAL OF PLANT NUTRITION, 2019, 42 (10) : 1192 - 1204
  • [3] Effects of seed priming and water potential on seed germination and emergence of wheat (Triticum aestivum L.) varieties in laboratory assays and in the field
    Murungu, F. S.
    AFRICAN JOURNAL OF BIOTECHNOLOGY, 2011, 10 (21): : 4365 - 4371
  • [4] Seed priming and salinity induced variations in wheat (Triticum aestivum L.) leaf protein profile
    Hameed, A.
    Afzal, I.
    Iqbal, N.
    SEED SCIENCE AND TECHNOLOGY, 2010, 38 (01) : 236 - 241
  • [5] Effects of seed priming with ascorbic acid to mitigate salinity stress on three wheat (Triticum aestivum L.) cultivars.
    Baig, Zoya
    Khan, Nasrullah
    Sahar, Shagufta
    Sattar, Samia
    Zehra, Rabab
    ACTA ECOLOGICA SINICA, 2021, 41 (05) : 491 - 498
  • [6] Seed priming with sorghum extracts and benzyl aminopurine improves the tolerance against salt stress in wheat (Triticum aestivum L.)
    Bajwa, Ali Ahsan
    Farooq, Muhammad
    Nawaz, Ahmad
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2018, 24 (02) : 239 - 249
  • [7] Seed priming mitigates high salinity impact on germination of bread wheat (Triticum aestivum L.) by improving carbohydrate and protein mobilization
    Sghayar, Souhir
    Debez, Ahmed
    Lucchini, Giorgio
    Abruzzese, Alessandro
    Zorrig, Walid
    Negrini, Noemi
    Morgutti, Silvia
    Abdelly, Chedly
    Sacchi, Gian Attilio
    Pecchioni, Nicola
    Vaccino, Patrizia
    PLANT DIRECT, 2023, 7 (06)
  • [8] Exogenous Melatonin Improves Seed Germination of Wheat (Triticum aestivum L.) under Salt Stress
    Wang, Jiajie
    Lv, Penghui
    Yan, Di
    Zhang, Zhendong
    Xu, Xiaomeng
    Wang, Ting
    Wang, Ye
    Peng, Zhen
    Yu, Chunxin
    Gao, Yuerong
    Duan, Liusheng
    Li, Runzhi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (15)
  • [9] Effects of different priming applications on seed germination and some agromorphological characteristics of bread wheat (Triticum aestivum L.)
    Toklu, Faruk
    Baloch, Faheem Shehzad
    Karakoy, Tolga
    Ozkan, Hakan
    TURKISH JOURNAL OF AGRICULTURE AND FORESTRY, 2015, 39 (06) : 1005 - 1013
  • [10] The Efficiency of Seed Priming with Dead Sea Water for Improving Germination and Early Seedling Growth of Wheat (Triticum aestivum L.) under Salinity
    Tamimi, Samih Mohammad
    CARAKA TANI-JOURNAL OF SUSTAINABLE AGRICULTURE, 2024, 39 (02): : 343 - 358