Rokhlin Dimension for Compact Group Actions

被引:25
作者
Gardella, Eusebio [1 ]
机构
[1] Univ Munster, Fachbereich Math & Informat, Math Inst, Einsteinstr 62, D-48149 Munster, Germany
基金
美国国家科学基金会;
关键词
Group actions; compact Lie group; Rokhlin dimension; Kirchberg algebra; equivariant K-theory; C-ASTERISK-ALGEBRAS; FINITE-GROUP ACTIONS; ROHLIN PROPERTY; STAR-ALGEBRAS; AUTOMORPHISMS;
D O I
10.1512/iumj.2017.66.5951
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce and study the notion of Rokhlin dimension (with and without commuting towers) for compact group actions on sigma-unital C*-algebras. This notion generalizes the one introduced by Hirshberg, Winter, and Zacharias for finite groups and unital C*-algebras, and contains the Rokhlin property as the zero-dimensional case. We show, by means of an example, that commuting towers cannot always be arranged, even in the absence of K-theoretic obstructions. For a compact Lie group action on a compact Hausdorff space, freeness is equivalent to finite Rokhlin dimension of the induced action. We compare the notion of finite Rokhlin dimension to other existing definitions of noncommutative freeness for compact group actions. We obtain further K-theoretic obstructions to having an action of a non-finite compact Lie group with finite Rokhlin dimension with commuting towers, and use them to confirm a conjecture of Phillips. Furthermore, we obtain a Rokhlin-dimensional inequality that allows us to show that every pointwise outer action of a finite group on a Kirchberg algebra has Rokhlin dimension at most one.
引用
收藏
页码:659 / 703
页数:45
相关论文
共 37 条
  • [1] [Anonymous], 1955, TOPOLOGICAL TRANSFOR
  • [2] Atiyah MF, 1969, J. Differential Geometry, V3, P1
  • [3] BARLAK S., 2014, T AM MATH S IN PRESS
  • [4] The Rokhlin property vs. Rokhlin dimension 1 on unital Kirchberg algebras
    Barlak, Selcuk
    Enders, Dominic
    Matui, Hiroki
    Szabo, Gabor
    Winter, Wilhelm
    [J]. JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2015, 9 (04) : 1383 - 1393
  • [5] SYMMETRIES OF THE CAR ALGEBRA
    BLACKADAR, B
    [J]. ANNALS OF MATHEMATICS, 1990, 131 (03) : 589 - 623
  • [6] Blackadar Bruce, 1998, MATH SCI RES I PUBLI, V5
  • [7] SIMPLE CSTAR-ALGEBRAS GENERATED BY ISOMETRIES
    CUNTZ, J
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 57 (02) : 173 - 185
  • [8] Gardella E., 2015, Compact group actions with the Rokhlin property
  • [9] Gardella E., 2014, PREPRINT
  • [10] GARDELLA E., 2014, ROKHLIN DIMENSIONS D