The effect of surface contamination of tiny satellite on DC probe ionosphere measurement

被引:14
作者
Fang, H. K. [1 ]
Chen, W. H. [1 ]
Chen, Alfred B. [1 ]
Oyama, K. -I. [1 ,2 ,3 ]
机构
[1] Natl Cheng Kung Univ, Inst Space & Plasma Sci, Tainan 70101, Taiwan
[2] Kyushu Univ, Int Ctr Space Weather Study & Educ, Fukuoka, Fukuoka 8190395, Japan
[3] Asia Space Environm Res Consortium Co Ltd, Tokyo 1820024, Japan
关键词
LANGMUIR PROBE; BOARD;
D O I
10.1063/1.5052489
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The DC Langmuir probe is a widely-used instrument for the plasma measurement in the space missions. But to apply DC Langmuir probe to a tiny satellite, such as a cubesat, for ionosphere study is difficult to get accurate electron density (ne) and electron temperature (T-e) for two reasons: the contamination on both satellite surface and the electrode to be used, and a lack of conductive surface area of the tiny satellite. Under the charging effect of the satellite with an insufficient area ratio between the surface of the probe and the spacecraft, the contaminations on the surface of both probe and the satellite, acting as equivalent capacitances and resistances, modify both the potentials on the satellite and the probe, and an elevated T-e and a suppressed ne are derived incorrectly. In this paper, the effect of the surface contamination on the DC Langmuir probe measurements onboard a tiny satellite is investigated in detail. The effects of the accumulated charge and the impedances on the contamination layers have been identified in the experiments done in a ground chamber with similar plasma conditions in the Earth's ionosphere, and the characteristic dependences of the probe sweeping frequency and the plasma density are presented. The experiment result suggests that a contamination-free instrument TeNeP, operated at 0.2 similar to 10 MHz probe sweeping frequency and sweeping potentials below 500 mV, is a better solution to obtain accurate T-e and ne, onboard a satellite with a surface area ratio below 100. (c) 2018 Author(s).
引用
收藏
页数:13
相关论文
共 21 条
[1]   Contamination-free sounding rocket Langmuir probe [J].
Amatucci, WE ;
Schuck, PW ;
Walker, DN ;
Kintner, PM ;
Powell, S ;
Holback, B ;
Leonhardt, D .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (04) :2052-2057
[2]   SELF-CLEANING LANGMUIR PROBE [J].
AMATUCCI, WE ;
KOEPKE, ME ;
SHERIDAN, TE ;
ALPORT, MJ ;
CARROLL, JJ .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1993, 64 (05) :1253-1256
[3]  
Barjatya A., 2007, THESIS UTAH STATE U, P274
[4]  
Brace LH, 1998, GEOPH MONOG SERIES, V102, P23
[5]   Back-diffusion plasma generator for ionosphere study [J].
Fang, H. K. ;
Oyama, K-I ;
Chen, A. B. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2017, 26 (11)
[6]  
Fang H. K., 2015, CHINSES J PHYS, V53
[7]   A FLOATING DOUBLE PROBE METHOD FOR MEASUREMENTS IN GAS DISCHARGES [J].
JOHNSON, EO ;
MALTER, L .
PHYSICAL REVIEW, 1950, 80 (01) :58-68
[8]   A critical overview on spacecraft charging mitigation methods [J].
Lai, ST .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2003, 31 (06) :1118-1124
[9]  
McTernan J. K., 2014, 13 SPAC CHARG TECHN
[10]   Understanding Langmuir probe current-voltage characteristics [J].
Merlino, Robert L. .
AMERICAN JOURNAL OF PHYSICS, 2007, 75 (12) :1078-1085