Adaptive and minimax estimation of the cumulative distribution function given a functional covariate

被引:14
|
作者
Chagny, Gaelle [1 ]
Roche, Angelina [2 ]
机构
[1] Univ Rouen, LMRS, UMR CNRS 6085, F-76821 Mont St Aignan, France
[2] Univ Montpellier 2, I3M, UMR CNRS 5149, F-34095 Montpellier 5, France
来源
ELECTRONIC JOURNAL OF STATISTICS | 2014年 / 8卷
关键词
Adaptive kernel estimator; conditional cumulative distribution function; minimax estimation; functional random variable; small ball probability; NONPARAMETRIC REGRESSION ESTIMATION; DENSITY-ESTIMATION; CEREBRAL EDEMA; LOWER TAIL; PROBABILITIES; INEQUALITIES; CHILDREN; SINGLE; MODEL; RATES;
D O I
10.1214/14-EJS956
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the nonparametric kernel estimation of the conditional cumulative distribution function given a functional covariate. Given the bias-variance trade-off of the risk, we first propose a totally data-driven bandwidth selection mechanism in the spirit of the recent Goldenshluger-Lepski method and of model selection tools. The resulting estimator is shown to be adaptive and minimax optimal: we establish nonasymptotic risk bounds and compute rates of convergence under various assumptions on the decay of the small ball probability of the functional variable. We also prove lower bounds. Both pointwise and integrated criteria are considered. Finally, the choice of the norm or semi-norm involved in the definition of the estimator is also discussed, as well as the projection of the data on finite dimensional subspaces. Numerical results illustrate the method.
引用
收藏
页码:2352 / 2404
页数:53
相关论文
共 50 条
  • [41] Adaptive Conditional Distribution Estimation with Bayesian Decision Tree Ensembles
    Li, Yinpu
    Linero, Antonio R.
    Murray, Jared
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (543) : 2129 - 2142
  • [42] Adaptive wavelet estimation of a function from an m-dependent process with possibly unbounded m
    Chesneau, Christophe
    Doosti, Hassan
    Stone, Lewi
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (05) : 1123 - 1135
  • [43] Minimax estimator of regression coefficient in normal distribution under balanced loss function
    Hu, Guikai
    Li, Qingguo
    Peng, Ping
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (05) : 1228 - 1237
  • [44] An Adaptive Covariance Scaling Estimation of Distribution Algorithm
    Yang, Qiang
    Li, Yong
    Gao, Xu-Dong
    Ma, Yuan-Yuan
    Lu, Zhen-Yu
    Jeon, Sang-Woon
    Zhang, Jun
    MATHEMATICS, 2021, 9 (24)
  • [45] Robust estimation in the nested case-control design under a misspecified covariate functional form
    Nuno, Michelle M.
    Gillen, Daniel L.
    STATISTICS IN MEDICINE, 2021, 40 (02) : 299 - 311
  • [46] Adaptive pointwise estimation of conditional density function
    Bertin, Karine
    Lacour, Claire
    Rivoirard, Vincent
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (02): : 939 - 980
  • [47] Adaptive estimation of a distribution function and its density in sup-norm loss by wavelet and spline projections
    Gine, Evarist
    Nickl, Richard
    BERNOULLI, 2010, 16 (04) : 1137 - 1163
  • [48] Minimax Estimation of the Bounded Parameter of Some Discrete Distributions Under LINEX Loss Function
    Tabrizi, N. Jafari
    Nematollahi, N.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (15) : 2701 - 2710
  • [49] A logistic regression point of view toward loss given default distribution estimation
    Hwang, Ruey-Ching
    Chu, Chih-Kang
    QUANTITATIVE FINANCE, 2018, 18 (03) : 419 - 435
  • [50] Survival estimation through the cumulative hazard function with monotone natural cubic splines
    Bantis, Leonidas E.
    Tsimikas, John V.
    Georgiou, Stelios D.
    LIFETIME DATA ANALYSIS, 2012, 18 (03) : 364 - 396