Accurate estimation of heritability in genome wide studies using random effects models

被引:20
作者
Golan, David [1 ]
Rosset, Saharon [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
关键词
EM ALGORITHM; HEIGHT; LOCI;
D O I
10.1093/bioinformatics/btr219
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Random effects models have recently been introduced as an approach for analyzing genome wide association studies (GWASs), which allows estimation of overall heritability of traits without explicitly identifying the genetic loci responsible. Using this approach, Yang et al. (2010) have demonstrated that the heritability of height is much higher than the similar to 10% associated with identified genetic factors. However, Yang et al. (2010) relied on a heuristic for performing estimation in this model. Results: We adopt the model framework of Yang et al. (2010) and develop a method for maximum-likelihood (ML) estimation in this framework. Our method is based on Monte-Carlo expectation-maximization (MCEM; Wei et al., 1990), an expectation-maximization algorithm wherein a Markov chain Monte Carlo approach is used in the E-step. We demonstrate that this method leads to more stable and accurate heritability estimation compared to the approach of Yang et al. (2010), and it also allows us to find ML estimates of the portion of markers which are causal, indicating whether the heritability stems from a small number of powerful genetic factors or a large number of less powerful ones.
引用
收藏
页码:I317 / I323
页数:7
相关论文
共 23 条
  • [1] [Anonymous], 1992, Variance Components
  • [2] A parallel eigensolver for dense symmetric matrices based on multiple relatively robust representations
    Bientinesi, P
    Dhillon, IS
    Van de Geijn, RA
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 27 (01) : 43 - 66
  • [3] BOYLES RA, 1983, J ROY STAT SOC B MET, V45, P47
  • [4] APPROXIMATE INFERENCE IN GENERALIZED LINEAR MIXED MODELS
    BRESLOW, NE
    CLAYTON, DG
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) : 9 - 25
  • [5] MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM
    DEMPSTER, AP
    LAIRD, NM
    RUBIN, DB
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01): : 1 - 38
  • [6] Geweke J.F., 1991, Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments (No. 148), DOI DOI 10.21034/SR.148
  • [7] Common Genetic Variation and Human Traits
    Goldstein, David B.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2009, 360 (17) : 1696 - 1698
  • [8] Many sequence variants affecting diversity of adult human height
    Gudbjartsson, Daniel F.
    Walters, G. Bragi
    Thorleifsson, Gudmar
    Stefansson, Hreinn
    Halldorsson, Bjarni V.
    Zusmanovich, Pasha
    Sulem, Patrick
    Thorlacius, Steinunn
    Gylfason, Arnaldur
    Steinberg, Stacy
    Helgadottir, Anna
    Ingason, Andres
    Steinthorsdottir, Valgerdur
    Olafsdottir, Elinborg J.
    Olafsdottir, Gudridur H.
    Jonsson, Thorvaldur
    Borch-Johnsen, Knut
    Hansen, Torben
    Andersen, Gitte
    Jorgensen, Torben
    Pedersen, Oluf
    Aben, Katja K.
    Witjes, J. Alfred
    Swinkels, Dorine W.
    den Heijer, Martin
    Franke, Barbara
    Verbeek, Andre L. M.
    Becker, Diane M.
    Yanek, Lisa R.
    Becker, Lewis C.
    Tryggvadottir, Laufey
    Rafnar, Thorunn
    Gulcher, Jeffrey
    Kiemeney, Lambertus A.
    Kong, Augustine
    Thorsteinsdottir, Unnur
    Stefansson, Kari
    [J]. NATURE GENETICS, 2008, 40 (05) : 609 - 615
  • [9] Data and theory point to mainly additive genetic variance for complex traits
    Hill, William G.
    Goddard, Michael E.
    Visscher, Peter M.
    [J]. PLOS GENETICS, 2008, 4 (02):
  • [10] Lehmann E. L., 2006, THEORY POINT ESTIMAT, DOI 10.1007/b98854