共 50 条
Molecular Dynamic Simulations of Forming Graphene Nanoribbons from Single-Wall Carbon Nanotubes
被引:1
|作者:
Zhang, Rongjun
[1
,2
]
Jiang, Hanqing
[1
]
机构:
[1] Arizona State Univ, Sch Mech Aerosp Chem & Mat Engn, Tempe, AZ 85287 USA
[2] Wuhan Univ, Dept Phys, Wuhan 430072, Peoples R China
关键词:
Graphene Nanoribbons;
Single-Wall Carbon Nanotubes;
Molecular Dynamic Simulation;
NANOPARTICLES;
D O I:
10.1166/jctn.2011.1743
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
Graphene nanoribbons (GNRs) are strips of graphene, a newly discovered material with carbon atoms parked in a two-dimensional honeycomb lattice, has attracted great deal of attention, because of its spectacular properties and various applications. This paper develops a new approach to form GNRs, namely cleaving single-wall carbon nanotubes (SWCNTs) by the bombardment of nanoparticles, by means of molecular dynamics simulations. Nanoparticles are accelerated by an electric field to bombard SWCNTs on substrates. Depending on the offset and relative diameters between nanoparticles and SWCNT, the SWCNTs can be cleaved and unraveled to GNRs. Because of the nanometer-scale of circumference of SWCNTs, the formed GNRs possess nanometer width. The conditions of tie molecular dynamics simulations are able to be realized by current experimental capability.
引用
收藏
页码:717 / 721
页数:5
相关论文