Aberrant sphingomyelin 31P-NMR signatures in giant cell tumour of bone

被引:2
作者
Quiroz-Acosta, Tayde [1 ]
Montserrat Flores-Martinez, Yazmin [1 ]
Becerra-Martinez, Elvia [2 ]
Perez-Hernandez, Elizabeth [3 ]
Perez-Hernandez, Nury [1 ]
Ernesto Banuelos-Hernandez, Angel [4 ]
机构
[1] Inst Politecn Nacl, Escuela Nacl Med & Homeopatia, Ciudad De Mexico 07320, Mexico
[2] Inst Politecn Nacl, Ctr Nanociencias & Micro & Nanotecnol, Ciudad De Mexico 07320, Mexico
[3] Inst Mexicano Seguro Social, UMAE Traumatol Ortopedia & Rehabil Dr Victorio de, Ciudad De Mexico 07760, Mexico
[4] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Programa Posgrad Farmacol, AP 14-740, Ciudad De Mexico 07000, Mexico
关键词
giant cell tumour of bone; sphingomyelin; ceramide; sphingomyelin synthase; sphingomyelinase; neutral sphingomyelinase 2; bone cancer; giant cell-rich bone tumours; 31P-NMR; glycerophospholipids; NEUTRAL SPHINGOMYELINASE; CERAMIDE; CANCER; MEMBRANE; SPHINGOLIPIDS; METABOLISM; BREAST; MUTATIONS; APOPTOSIS; BIOMARKER;
D O I
10.1139/bcb-2020-0599
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
An understanding of the biochemistry of the giant cell tumour of bone (GCTB) provides an opportunity for the development of prognostic markers and identification of therapeutic targets. Based on metabolomic analysis, we proposed glycerophospholipid metabolism as the altered pathway in GCTB., The objective of this study was to identify these altered metabolites. Using phosphorus-31 nuclear magnetic resonance spectroscopy (P-31-NMR), sphingomyelin was determined to be the most dysregulated phospholipid in tissue samples from six patients with GCTB. Enzymes related to its biosynthesis and hydrolysis were examined using immunodetection techniques. High expression of sphingomyelin synthases 1 and 2, but low expression of neutral sphingomyelinase 2 (nSMase2) was found in GCTB tissues compared to non-neoplastic bone tissues. Sphingomyelin/ceramide biosynthesis is dysregulated in GCTB due to alterations in the expression of SMS1, SMS2, and nSMase2.
引用
收藏
页码:717 / 724
页数:8
相关论文
共 61 条
  • [1] Inhibitors of the sphingomyelin cycle: Sphingomyelin synthases and sphingomyelinases
    Adada, Mohamad
    Luberto, Chiara
    Canals, Daniel
    [J]. CHEMISTRY AND PHYSICS OF LIPIDS, 2016, 197 : 45 - 59
  • [2] H3F3A (Histone 3.3) G34W Immunohistochemistry: A Reliable Marker Defining Benign and Malignant Giant Cell Tumor of Bone
    Amary, Fernanda
    Berisha, Fitim
    Ye, Hongtao
    Gupta, Manu
    Gutteridge, Alice
    Baumhoer, Daniel
    Gibbons, Rebecca
    Tirabosco, Roberto
    O'Donnell, Paul
    Flanagan, Adrienne M.
    [J]. AMERICAN JOURNAL OF SURGICAL PATHOLOGY, 2017, 41 (08) : 1059 - 1068
  • [3] Dynamic adaptive binning: an improved quantification technique for NMR spectroscopic data
    Anderson, Paul E.
    Mahle, Deirdre A.
    Doom, Travis E.
    Reo, Nicholas V.
    DelRaso, Nicholas J.
    Raymer, Michael L.
    [J]. METABOLOMICS, 2011, 7 (02) : 179 - 190
  • [4] Metabolomics in cancer biomarker discovery: Current trends and future perspectives
    Armitage, Emily G.
    Barbas, Coral
    [J]. JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2014, 87 : 1 - 11
  • [5] A deletion in the gene encoding sphingomyelin phosphodiesterase 3 (Smpd3) results in osteogenesis and dentinogenesis imperfecta in the mouse
    Aubin, I
    Adams, CP
    Opsahl, S
    Septier, D
    Bishop, CE
    Auge, N
    Salvayre, R
    Negre-Salvayre, A
    Goldberg, M
    Guénet, JL
    Poirier, C
    [J]. NATURE GENETICS, 2005, 37 (08) : 803 - 805
  • [6] Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone
    Behjati, Sam
    Tarpey, Patrick S.
    Presneau, Nadege
    Scheipl, Susanne
    Pillay, Nischalan
    Van Loo, Peter
    Wedge, David C.
    Cooke, Susanna L.
    Gundem, Gunes
    Davies, Helen
    Nik-Zainal, Serena
    Martin, Sancha
    McLaren, Stuart
    Goodie, Victoria
    Robinson, Ben
    Butler, Adam
    Teague, Jon W.
    Halai, Dina
    Khatri, Bhavisha
    Myklebost, Ola
    Baumhoer, Daniel
    Jundt, Gernot
    Hamoudi, Rifat
    Tirabosco, Roberto
    Amary, M. Fernanda
    Futreal, P. Andrew
    Stratton, Michael R.
    Campbell, Peter J.
    Flanagan, Adrienne M.
    [J]. NATURE GENETICS, 2013, 45 (12) : 1479 - U105
  • [7] Regulation of sphingomyelin metabolism
    Bienias, Kamil
    Fiedorowicz, Anna
    Sadowska, Anna
    Prokopiuk, Slawomir
    Car, Halina
    [J]. PHARMACOLOGICAL REPORTS, 2016, 68 (03) : 570 - 581
  • [8] Changes in ceramide and sphingomyelin following fludarabine treatment of human chronic B-cell leukemia cells
    Biswal, SS
    Datta, K
    Acquaah-Mensah, GK
    Kehrer, JP
    [J]. TOXICOLOGY, 2000, 154 (1-3) : 45 - 53
  • [9] Targeting Phospholipid Metabolism in Cancer
    Cheng, Menglin
    Bhujwalla, Zaver M.
    Glunde, Kristine
    [J]. FRONTIERS IN ONCOLOGY, 2016, 6
  • [10] Neutral Sphingomyelinases in Cancer: Friend or Foe?
    Clarke, Christopher J.
    [J]. SPHINGOLIPIDS IN CANCER, 2018, 140 : 97 - 119