Overexpression of watermelon m6A methyltransferase ClMTB enhances drought tolerance in tobacco by mitigating oxidative stress and photosynthesis inhibition and modulating stress-responsive gene expression

被引:18
|
作者
He, Yanjun [1 ]
Li, Yulin [1 ,2 ]
Yao, Yixiu [1 ,2 ]
Zhang, Huiqing [1 ]
Wang, Yuhuan [1 ,2 ]
Gao, Jie [2 ]
Fan, Min [2 ]
机构
[1] Zhejiang Acad Agr Sci, Inst Vegetables, Hangzhou 310021, Peoples R China
[2] Xinjiang Agr Univ, Coll Forestry & Hort, Urumqi, Xinjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
N6-methyladenosine(m6A) modification; ClMTB; Drought tolerance; Watermelon; Tobacco; ARABIDOPSIS; IDENTIFICATION; GROWTH;
D O I
10.1016/j.plaphy.2021.10.007
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
N6-methyladenosine (m6A) in RNA is a very important post-transcriptional modification mechanism in eukaryotes. It has been reported to have important regulatory roles in some stress responses in model plants, but there has been no research regarding m6A modifications in watermelon. In this study, we cloned and characterized m6A methyltransferase, ClMTB (mRNA adenosine methylase B, METTL14 human homolog protein) in watermelon. ClMTB expression could be weakly induced by drought stress as determined by the quantitative real-time PCR (qRT-PCR) and Promoter::GUS analyses. ClMTB over-expressed in tobacco plants increased drought tolerance via enhancing reactive oxygen species (ROS) scavenging system and alleviating photosynthesis inhibition under drought. Transcriptome profiles indicated the multiple hormone and stress-responsive genes were specifically induced in over-expressed ClMTB plants under drought conditions. These results suggest that ClMTB-mediated m6A modification serves as a positive regulatory factor of drought tolerance. This study is the first one to provide an understanding of the specific roles of ClMTB in watermelon adaptation to drought stress, and may also provide important insights into the signaling pathway mediated by m6A modification in response to stress conditions.
引用
收藏
页码:340 / 352
页数:13
相关论文
共 50 条
  • [1] FvC5SD overexpression enhances drought tolerance in soybean by reactive oxygen species scavenging and modulating stress-responsive gene expression
    Ling Zhang
    Tong Li
    Yang Wang
    Yuanyu Zhang
    Ying-shan Dong
    Plant Cell Reports, 2019, 38 : 1039 - 1051
  • [2] FvC5SD overexpression enhances drought tolerance in soybean by reactive oxygen species scavenging and modulating stress-responsive gene expression
    Zhang, Ling
    Li, Tong
    Wang, Yang
    Zhang, Yuanyu
    Dong, Ying-shan
    PLANT CELL REPORTS, 2019, 38 (09) : 1039 - 1051
  • [3] Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes
    Xiao-San Huang
    Ji-Hong Liu
    Xue-Jun Chen
    BMC Plant Biology, 10
  • [4] Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes
    Huang, Xiao-San
    Liu, Ji-Hong
    Chen, Xue-Jun
    BMC PLANT BIOLOGY, 2010, 10
  • [5] Overexpression of a multiple stress-responsive gene, ZmMPK4, enhances tolerance to low temperature in transgenic tobacco
    Zhou, Yan
    Zhang, Dan
    Pan, Jiaowen
    Kong, Xiangpei
    Liu, Yukun
    Sun, Liping
    Wang, Li
    Li, Dequan
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2012, 58 : 174 - 181
  • [6] Grafting improves drought tolerance by regulating antioxidant enzyme activities and stress-responsive gene expression in tobacco
    Liu, Jianjun
    Li, Junqi
    Su, Xinhong
    Xia, Zongliang
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2014, 107 : 173 - 179
  • [7] Grafting enhances drought tolerance by regulating stress-responsive gene expression and antioxidant enzyme activities in cucumbers
    Shehata, Said A.
    Omar, Hanaa S.
    Elfaidy, Ahmed G. S.
    EL-Sayed, Shereen S. F.
    Abuarab, Mohamed E.
    Abdeldaym, Emad A.
    BMC PLANT BIOLOGY, 2022, 22 (01)
  • [8] Grafting enhances drought tolerance by regulating stress-responsive gene expression and antioxidant enzyme activities in cucumbers
    Said A. Shehata
    Hanaa S. Omar
    Ahmed G. S. Elfaidy
    Shereen S. F. EL-Sayed
    Mohamed E. Abuarab
    Emad A. Abdeldaym
    BMC Plant Biology, 22
  • [9] A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses
    Saad, Abu Sefyan I.
    Li, Xu
    Li, He-Ping
    Huang, Tao
    Gao, Chun-Sheng
    Guo, Mao-Wei
    Cheng, Wei
    Zhao, Guang-Yao
    Liao, Yu-Cai
    PLANT SCIENCE, 2013, 203 : 33 - 40
  • [10] Overexpression of ThMYB8 mediates salt stress tolerance by directly activating stress-responsive gene expression
    Liu, Zhong-Yuan
    Li, Xin-Ping
    Zhang, Teng-Qian
    Wang, Yuan-Yuan
    Wang, Chao
    Gao, Cai-Qiu
    PLANT SCIENCE, 2021, 302