Simultaneous wavelet estimation and deconvolution of reflection seismic signals

被引:58
作者
Cheng, QS [1 ]
Chen, R [1 ]
Li, TH [1 ]
机构
[1] TEXAS A&M UNIV,DEPT STAT,COLLEGE STN,TX 77843
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 1996年 / 34卷 / 02期
基金
美国国家科学基金会;
关键词
D O I
10.1109/36.485115
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this paper, the problem of simultaneous wavelet estimation and deconvolution is investigated with a Bayesian approach under the assumption that the reflectivity obeys a Bernoulli-Gaussian distribution. Unknown quantities, including the seismic wavelet, the reflection sequence, and the statistical parameters of reflection sequence and noise are all treated as realizations of random variables endowed with suitable prior distributions. Instead of deterministic procedures that can be quite computationally burdensome, a simple Monte Carlo method, called Gibbs sampler, is employed to produce random samples iteratively from the joint posterior distribution of the unknowns. Modifications are made in the Gibbs sampler to overcome the ambiguity problems inherent in seismic deconvolution. Simple averages of the random samples are used to approximate the minimum mean-squared error (MMSE) estimates of the unknowns. Numerical examples are given to demonstrate the performance of the method.
引用
收藏
页码:377 / 384
页数:8
相关论文
共 18 条
[1]   BLIND RESTORATION OF LINEARLY DEGRADED DISCRETE SIGNALS BY GIBBS SAMPLING [J].
CHEN, R ;
LI, TH .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (10) :2410-2413
[2]  
CHENG Q, 1990, ANN STAT, V18, P1745
[3]  
DeGroot M. H, 2012, PROBABILITY STAT
[4]  
Donoho D., 1981, APPL TIME SERIES ANA
[5]   SAMPLING-BASED APPROACHES TO CALCULATING MARGINAL DENSITIES [J].
GELFAND, AE ;
SMITH, AFM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) :398-409
[6]  
Gelman A., 1992, Stat. Sci., V7, P457, DOI DOI 10.1214/SS/1177011136
[7]   STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES [J].
GEMAN, S ;
GEMAN, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) :721-741
[8]  
GOUSSARD Y, 1990, MATH SIGNAL PROCESSI, V2, P121
[9]   MAXIMUM-LIKELIHOOD DECONVOLUTION - AN OPTIMIZATION THEORY PERSPECTIVE [J].
GOUTSIAS, J ;
MENDEL, JM .
GEOPHYSICS, 1986, 51 (06) :1206-1220
[10]   MULTICHANNEL SEISMIC DECONVOLUTION [J].
IDIER, J ;
GOUSSARD, Y .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1993, 31 (05) :961-979