Precipitate formation in aluminium alloys: Multi-scale modelling approach

被引:21
|
作者
Kleiven, David [1 ]
Akola, Jaakko [1 ,2 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Phys, NO-7491 Trondheim, Norway
[2] Tampere Univ, Computat Phys Lab, POB 692, FI-33014 Tampere, Finland
关键词
Nucleation; Cluster expansion; Phase-field; Multi-scale modelling; Aluminium alloys; PHASE; ENERGY; SIMULATION; ZONES;
D O I
10.1016/j.actamat.2020.05.050
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ternary Al-Mg-Si alloys have been modelled based on a multi-scale approach that spans across atomistic and mesoscale models and uses theoretically determined parameters. First, a cluster expansion model for total energy has been trained for atomistic configurations (FCC lattice) based on the data from density functional simulations of electronic structure. Free energy curves as a function of solute (Mg, Si) concentrations and disorder have been obtained by using this parameterisation together with meta-dynamics Monte Carlo sampling. In addition, free energy data, surface tensions as well as strain energy using the linear elasticity theory have been collected to be combined for a mesoscale phase-field model. The application of this approach shows that the formation of a layered MgSi phase, with (100) planes, is a particularly stable solute aggregation motif within the Al host matrix. Moreover, the phase-field model demonstrates that the preferred shape of the MgSi precipitates is needle-like (in FCC), and they can act as precursors for the important and well-known beta ''-type precipitates which are formed by translating one Mg column by a 1/2 lattice vector. The results provide theoretical evidence that the solute aggregation into needle-like MgSi domains (precipitates) is an inherent property of Al-Mg-Si alloys, and that it takes place even without the presence of vacancies which is a precondition for the eventual formation beta '' precipitates. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd.
引用
收藏
页码:123 / 131
页数:9
相关论文
共 50 条
  • [1] The role of microalloying elements in the formation of precipitate plates in aluminium alloys
    Nie, JF
    Aaronson, HI
    Muddle, BC
    JAPAN INSTITUTE OF METALS, PROCEEDINGS, VOL 12, (JIMIC-3), PTS 1 AND 2: SOLID - SOLID PHASE TRANSFORMATIONS, 1999, : 157 - 160
  • [2] A hybrid approach to multi-scale modelling of cancer
    Osborne, J. M.
    Walter, A.
    Kershaw, S. K.
    Mirams, G. R.
    Fletcher, A. G.
    Pathmanathan, P.
    Gavaghan, D.
    Jensen, O. E.
    Maini, P. K.
    Byrne, H. M.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1930): : 5013 - 5028
  • [3] A fast efficient multi-scale approach to modelling the development of hydride microstructures in zirconium alloys
    Patel, Mitesh
    Reali, Luca
    Sutton, Adrian P.
    Balint, Daniel S.
    Wenman, Mark R.
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 190
  • [4] Multi-scale modelling in computational biomedicine
    Sloot, Peter M. A.
    Hoekstra, Alfons G.
    BRIEFINGS IN BIOINFORMATICS, 2010, 11 (01) : 142 - 152
  • [5] A linked data approach to multi-scale energy modelling
    Hoare, Cathal
    Aghamolaei, Reihaneh
    Lynch, Muireann
    Gaur, Ankita
    O'Donnell, James
    ADVANCED ENGINEERING INFORMATICS, 2022, 54
  • [6] Multi-scale Cluster Dynamics modelling of Guinier-Preston zone formation in binary Al-Cu alloys
    Stegmueller, Tobias
    Haider, Ferdinand
    ACTA MATERIALIA, 2019, 177 : 240 - 249
  • [7] Multi-Physics and Multi-Scale Meshless Simulation System for Direct-Chill Casting of Aluminium Alloys
    Sarler, Bozidar
    Dobravec, Tadej
    Glavan, Gasper
    Hatic, Vanja
    Mavric, Bostjan
    Vertnik, Robert
    Cvahte, Peter
    Gregor, Filip
    Jelen, Marina
    Petrovic, Marko
    STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING, 2019, 65 (11-12): : 658 - 670
  • [8] Analysis of the ventilation systems in the Dartford tunnels using a multi-scale modelling approach
    Colella, F.
    Rein, G.
    Carvel, R.
    Reszka, P.
    Torero, J. L.
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2010, 25 (04) : 423 - 432
  • [9] A framework for multi-scale modelling
    Chopard, B.
    Borgdorff, Joris
    Hoekstra, A. G.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 372 (2021):
  • [10] Multi-scale Modelling of Electrochemically Promoted Systems
    Fragkopoulos, Ioannis S.
    Theodoropoulos, Constantinos
    ELECTROCHIMICA ACTA, 2014, 150 : 232 - 244