Numerical solution of two dimensional time fractional-order biological population model

被引:17
作者
Prakash, Amit [1 ]
Kumar, Manoj [2 ]
机构
[1] Natl Inst Technol, Dept Math, Kurukshetra 136119, Haryana, India
[2] Natl Inst Technol, Dept Math, Kurukshetra 136119, Haryana, India
来源
OPEN PHYSICS | 2016年 / 14卷 / 01期
关键词
Biological population model; Mittag-leffler function; Caputo fractional derivative; Lagrange multiplier; parabolic equation; VARIATIONAL ITERATION METHOD; BURGERS EQUATIONS; APPROXIMATE; DIFFUSION;
D O I
10.1515/phys-2016-0021
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we provide an approximate solution of a parabolic fractional degenerate problem emerging in a spatial diffusion of biological population model using a fractional variational iteration method (FVIM). Four test illustrations are used to show the proficiency and accuracy of the projected scheme. Comparisons between exact solutions and numerical solutions are presented for different values of fractional order alpha.
引用
收藏
页码:177 / 186
页数:10
相关论文
共 50 条
  • [31] On the solution of fractional order SIS epidemic model
    Hassouna, M.
    Ouhadan, A.
    El Kinani, E. H.
    CHAOS SOLITONS & FRACTALS, 2018, 117 : 168 - 174
  • [32] APPROXIMATE SOLUTION OF A NONLINEAR FRACTIONAL-ORDER HIV MODEL USING HOMOTOPY ANALYSIS METHOD
    Naik, Parvaiz Ahmad
    Ghoreishi, Mohammad
    Zu, Jian
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2022, 19 (01) : 52 - 84
  • [33] Numerical Approach for Solving a Fractional-Order Norovirus Epidemic Model with Vaccination and Asymptomatic Carriers
    Raezah, Aeshah A.
    Zarin, Rahat
    Raizah, Zehba
    SYMMETRY-BASEL, 2023, 15 (06):
  • [34] HIV/AIDS epidemic fractional-order model
    Zafar, Zain Ul Abadin
    Rehan, Kashif
    Mushtaq, M.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2017, 23 (07) : 1298 - 1315
  • [35] APPLICATION OF HOMOTOPY ANALYSIS TRANSFORM METHOD TO FRACTIONAL BIOLOGICAL POPULATION MODEL
    Kumar, Devendra
    Singh, Jagdev
    Sushila
    ROMANIAN REPORTS IN PHYSICS, 2013, 65 (01) : 63 - 75
  • [36] Predefined-time convergence in fractional-order systems
    Munoz-Vazquez, Aldo Jonathan
    Sanchez-Torres, Juan Diego
    Defoort, Michael
    Boulaaras, Salah
    CHAOS SOLITONS & FRACTALS, 2021, 143
  • [37] Modeling and numerical investigation of fractional-order bovine babesiosis disease
    Ahmad, Aqeel
    Farman, Muhammad
    Naik, Parvaiz Ahmad
    Zafar, Nayab
    Akgul, Ali
    Saleem, Muhammad Umer
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (03) : 1946 - 1964
  • [38] On time-optimal control of fractional-order systems
    Matychyn, Ivan
    Onyshchenko, Viktoriia
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 339 : 245 - 257
  • [39] Stability of Nonlinear Fractional-Order Time Varying Systems
    Huang, Sunhua
    Zhang, Runfan
    Chen, Diyi
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2016, 11 (03):
  • [40] Numerical Solution for Complex Systems of Fractional Order
    Ibrahim, Rabha W.
    JOURNAL OF APPLIED MATHEMATICS, 2012,