Numerical solution of two dimensional time fractional-order biological population model

被引:17
|
作者
Prakash, Amit [1 ]
Kumar, Manoj [2 ]
机构
[1] Natl Inst Technol, Dept Math, Kurukshetra 136119, Haryana, India
[2] Natl Inst Technol, Dept Math, Kurukshetra 136119, Haryana, India
来源
OPEN PHYSICS | 2016年 / 14卷 / 01期
关键词
Biological population model; Mittag-leffler function; Caputo fractional derivative; Lagrange multiplier; parabolic equation; VARIATIONAL ITERATION METHOD; BURGERS EQUATIONS; APPROXIMATE; DIFFUSION;
D O I
10.1515/phys-2016-0021
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we provide an approximate solution of a parabolic fractional degenerate problem emerging in a spatial diffusion of biological population model using a fractional variational iteration method (FVIM). Four test illustrations are used to show the proficiency and accuracy of the projected scheme. Comparisons between exact solutions and numerical solutions are presented for different values of fractional order alpha.
引用
收藏
页码:177 / 186
页数:10
相关论文
共 50 条
  • [21] An accurate numerical technique for solving two-dimensional time fractional order diffusion equation
    Nagy, A. M.
    El-Sayed, Adel A.
    INTERNATIONAL JOURNAL OF MODELLING AND SIMULATION, 2019, 39 (03) : 214 - 221
  • [22] Novel fractional-order decentralized control for nonlinear fractional-order composite systems with time delays
    Zhe, Zhang
    Yaonan, Wang
    Jing, Zhang
    Ai, Zhaoyang
    Cheng, FanYong
    Liu, Feng
    ISA TRANSACTIONS, 2022, 128 : 230 - 242
  • [23] A novel fractional-order neutral-type two-delayed neural network: Stability, bifurcation, and numerical solution
    Kumar, Pushpendra
    Lee, Tae H.
    Erturk, Vedat Suat
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2025, 232 : 245 - 260
  • [24] A numerical-analytical solution of multi-term fractional-order differential equations
    Kukla, Stanislaw
    Siedlecka, Urszula
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (07) : 4883 - 4894
  • [25] Stability Analysis of Fractional-Order Nonlinear Alcohol Consumption Model and Numerical Simulation
    Sivashankar, Murugesan
    Boulaaras, Salah
    Sabarinathan, Sriramulu
    FRACTAL AND FRACTIONAL, 2025, 9 (02)
  • [26] An efficient approach for solution of fractional-order Helmholtz equations
    Shah, Nehad Ali
    El-Zahar, Essam R.
    Aljoufi, Mona D.
    Chung, Jae Dong
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [27] An efficient approach for solution of fractional-order Helmholtz equations
    Nehad Ali Shah
    Essam R. El-Zahar
    Mona D. Aljoufi
    Jae Dong Chung
    Advances in Difference Equations, 2021
  • [28] A comprehensive numerical study of space-time fractional bioheat equation using fractional-order Legendre functions
    Roohi, R.
    Heydari, M. H.
    Aslami, M.
    Mahmoudi, M. R.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (10):
  • [29] Numerical Solution of Two Dimensional Time-Space Fractional Fokker Planck Equation With Variable Coefficients
    Mahmoud, Elsayed I.
    Orlov, Viktor N.
    MATHEMATICS, 2021, 9 (11)
  • [30] Generalized fractional-order Bernoulli-Legendre functions: an effective tool for solving two-dimensional fractional optimal control problems
    Rahimkhani, Parisa
    Ordokhani, Yadollah
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2019, 36 (01) : 185 - 212