Numerical solution of two dimensional time fractional-order biological population model

被引:17
|
作者
Prakash, Amit [1 ]
Kumar, Manoj [2 ]
机构
[1] Natl Inst Technol, Dept Math, Kurukshetra 136119, Haryana, India
[2] Natl Inst Technol, Dept Math, Kurukshetra 136119, Haryana, India
来源
OPEN PHYSICS | 2016年 / 14卷 / 01期
关键词
Biological population model; Mittag-leffler function; Caputo fractional derivative; Lagrange multiplier; parabolic equation; VARIATIONAL ITERATION METHOD; BURGERS EQUATIONS; APPROXIMATE; DIFFUSION;
D O I
10.1515/phys-2016-0021
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we provide an approximate solution of a parabolic fractional degenerate problem emerging in a spatial diffusion of biological population model using a fractional variational iteration method (FVIM). Four test illustrations are used to show the proficiency and accuracy of the projected scheme. Comparisons between exact solutions and numerical solutions are presented for different values of fractional order alpha.
引用
收藏
页码:177 / 186
页数:10
相关论文
共 50 条
  • [1] An efficient technique for two-dimensional fractional order biological population model
    Veeresha, P.
    Prakasha, D. G.
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2020, 11 (01)
  • [2] Exact Solutions of Fractional-Order Biological Population Model
    El-Sayed, A. M. A.
    Rida, S. Z.
    Arafa, A. A. M.
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2009, 52 (06) : 992 - 996
  • [3] Exact Solutions of Fractional-Order Biological Population Model
    A.M.A.El-Sayed
    S.Z.Rida
    A.A.M.Arafa
    CommunicationsinTheoreticalPhysics, 2009, 52 (12) : 992 - 996
  • [4] Numerical Solution of the Fractional Partial Differential Equations by the Two-Dimensional Fractional-Order Legendre Functions
    Yin, Fukang
    Song, Junqiang
    Wu, Yongwen
    Zhang, Lilun
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [5] NUMERICAL SOLUTION OF FRACTIONAL-ORDER POPULATION GROWTH MODEL USING FRACTIONAL-ORDER MUNTZ-LEGENDRE COLLOCATION METHOD AND PADE-APPROXIMANTS
    Asl, E. Hengamian
    Saberi-Nadjafi, J.
    Gachpazan, M.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 15 (02): : 157 - 175
  • [6] New Fractional Calculus and Application to the Fractional-order of Extended Biological Population Model
    Neirameh, Ahmad
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2018, 36 (03): : 115 - 128
  • [7] On the Solution of the Fractional-Order Pneumonia Model Using Numerical Computational Methods
    Alalyani, Ahmad
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (04): : 2763 - 2799
  • [8] An efficient computational approach for a fractional-order biological population model with carrying capacity
    Srivastava, H. M.
    Dubey, V. P.
    Kumar, R.
    Singh, J.
    Kumar, D.
    Baleanu, D.
    CHAOS SOLITONS & FRACTALS, 2020, 138
  • [9] On biological population model of fractional order
    Mohyud-Din, Syed Tauseef
    Ali, Ayyaz
    Bin-Mohsin, Bandar
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2016, 9 (05)