Gromov Hyperbolicity of Bounded Convex Domains

被引:1
作者
Zimmer, Andrew [1 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
来源
METRICAL AND DYNAMICAL ASPECTS IN COMPLEX ANALYSIS | 2017年 / 2195卷
关键词
PROJECTIVE-STRUCTURES; COMPLEX GEODESICS; PSEUDOCONVEX; MANIFOLDS; DYNAMICS; REAL;
D O I
10.1007/978-3-319-65837-7_4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:67 / 114
页数:48
相关论文
共 50 条
[31]   On a rigorous interpretation of the quantum Schrodinger-Langevin operator in bounded domains with applications [J].
Luis Lopez, Jose ;
Montejo-Gamez, J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 383 (02) :365-378
[32]   FIBERWISE KAHLER-RICCI FLOWS ON FAMILIES OF BOUNDED STRONGLY PSEUDOCONVEX DOMAINS [J].
Choi, Young-Jun ;
Yoo, Sungmin .
DOCUMENTA MATHEMATICA, 2022, 27 :847-868
[33]   Elastodynamics and elastostatics by a unified method of potentials for x3-convex domains [J].
Eskandari-Ghadi, Morteza ;
Pak, Ronald Y. S. .
JOURNAL OF ELASTICITY, 2008, 92 (02) :187-194
[34]   EXISTENCE OF SOLUTION FOR A GENERALIZED STOCHASTIC CAHN-HILLIARD EQUATION ON CONVEX DOMAINS [J].
Antonopoulou, Dimitra ;
Karali, Georgia .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 16 (01) :31-55
[35]   Elastodynamics and Elastostatics by a Unified Method of Potentials for x3-Convex Domains [J].
Morteza Eskandari-Ghadi ;
Ronald Y. S. Pak .
Journal of Elasticity, 2008, 92 :187-194
[36]   Weak vorticity formulation of the incompressible 2D Euler equations in bounded domains [J].
Iftimie, D. ;
Lopes Filho, M. C. ;
Nussenzveig Lopes, H. J. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 45 (02) :109-145
[37]   LAGRANGIAN FEYNMAN FORMULAS FOR SECOND-ORDER PARABOLIC EQUATIONS IN BOUNDED AND UNBOUNDED DOMAINS [J].
Butko, Yana A. ;
Grothaus, Martin ;
Smolyanov, Oleg G. .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2010, 13 (03) :377-392
[38]   NON-LINEAR LIE GROUPS THAT CAN BE REALIZED AS AUTOMORPHISM GROUPS OF BOUNDED DOMAINS [J].
Shabat, George ;
Tumanov, Alexander .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, :2933-2938
[39]   Inscribed Radius Bounds for Lower Ricci Bounded Metric Measure Spaces with Mean Convex Boundary [J].
Burtscher, Annegret ;
Ketterer, Christian ;
McCann, Robert J. ;
Woolgar, Eric .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
[40]   THE partial derivative-CAUCHY PROBLEM ON WEAKLY q-CONVEX DOMAINS IN CPn [J].
Saber, Sayed .
KRAGUJEVAC JOURNAL OF MATHEMATICS, 2020, 44 (04) :581-591