CONVERGENCE RATES OF SUPERCELL CALCULATIONS IN THE REDUCED HARTREE-FOCK MODEL

被引:6
作者
Gontier, David [1 ,2 ]
Lahbabi, Salma [3 ]
机构
[1] Univ Paris Est, Ecole Ponts, F-77455 Marne La Vallee, France
[2] INRIA, F-77455 Marne La Vallee, France
[3] Univ Hassan II Casablanca, ENSEM, Km 7 Route El Jadida,BP 8118, Casablanca, Morocco
关键词
Reduced Hartree-Fock; supercell model; Riemann sums; analytic functions; ENERGY; BLOCH;
D O I
10.1051/m2an/2015084
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is concerned with the numerical simulations of perfect crystals. We study the rate of convergence of the reduced Hartree-Fock (rHF) model in a supercell towards the periodic rHF model in the whole space. We prove that, whenever the crystal is an insulator or a semi-conductor, the supercell energy per unit cell converges exponentially fast towards the periodic rHF energy per unit cell, with respect to the size of the supercell.
引用
收藏
页码:1403 / 1424
页数:22
相关论文
共 15 条
  • [1] [Anonymous], 2012, PERTURBATION THEORY
  • [2] [Anonymous], MATH MODELS METHODS
  • [3] A definition of the ground state energy for systems composed of infinitely many particles
    Blanc, X
    Le Bris, C
    Lions, PL
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (1-2) : 439 - 475
  • [4] Exponential localization of Wannier functions in insulators
    Brouder, Christian
    Panati, Gianluca
    Calandra, Matteo
    Mourougane, Christophe
    Marzari, Nicola
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (04)
  • [5] A new approach to the modeling of local defects in crystals: The reduced Hartree-Fock case
    Cances, Eric
    Deleurence, Amelie
    Lewin, Mathieu
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 281 (01) : 129 - 177
  • [6] On the thermodynamic limit for Hartree-Fock type models
    Catto, I
    Le Bris, C
    Lions, PL
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (06): : 687 - 760
  • [7] BAND STRUCTURES AND PSEUDOPOTENTIAL FORM FACTORS FOR 14 SEMICONDUCTORS OF DIAMOND AND ZINC-BLENDE STRUCTURES
    COHEN, ML
    BERGSTRESSER, TK
    [J]. PHYSICAL REVIEW, 1966, 141 (02): : 789 - +
  • [8] DESCLOIZEAUX J, 1964, PHYS REV, V135, pA685
  • [9] DESCLOIZEAUX J, 1964, PHYS REV, V135, pA698
  • [10] ANALYTIC PROPERTIES OF BLOCH WAVES AND WANNIER FUNCTIONS
    KOHN, W
    [J]. PHYSICAL REVIEW, 1959, 115 (04): : 809 - 821