Investigation of Nonthermal Plasma Assisted Charcoal Gasification for Production of Hydrogen-Rich Syngas

被引:11
|
作者
Pang, Yin [1 ]
Hammer, Thomas [2 ]
Mueller, Dominik [1 ]
Karl, Juergen [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Chair Energy Proc Engn, Further Str 244f, D-90429 Nurnberg, Germany
[2] Siemens AG, Corp Technol Res Energy & Elect, Gunther Scharowsky Str 1, D-91058 Erlangen, Germany
关键词
nonthermal plasma; charcoal gasification; carbon conversion; hydrogen release; reaction kinetics; reaction mechanism; CO2; GASIFICATION; BIOMASS; KINETICS; STEAM; COAL;
D O I
10.3390/pr7020114
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The motivation of this work is to investigate experimentally the influence of nonthermal plasma (NTP) application on the reaction kinetics of atmospheric pressure steam gasification of charcoal using a thermostatically controlled drop tube reactor. A gliding-arc generator provides about 1 kW electrical power NTP. For comparison thermal gasification is investigated under comparable flow and specific energy input conditions providing additional heat to the steam. Optical temperature measurement 20 cm flow down of the NTP zone is utilized to characterize the specific enthalpy of the reactive flow. The composition of produced syngas is measured by a gas analyzer and used for the calculation of gas flow rates. The results show a NTP-enhancement on the production of individual syngas components (H-2, CO, CH4), especially on hydrogen production by around 39%. The syngas-based carbon conversion and hydrogen release are calculated from the carbon and hydrogen balance between the correspondent content in syngas and in the feedstock. The NTP promoted the carbon conversion and hydrogen release by 25% and 31%, respectively. The first-order reaction kinetics are determined by data-fitting in an Arrhenius diagram. The plasma enhanced the reaction rate coefficients by 27%. Based on experimental results and other literature, possible plasma-induced reactions are proposed.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Steam Gasification of Refuse-Derived Fuel with CaO Modification for Hydrogen-Rich Syngas Production
    Ren, Ranwei
    Wang, Haiming
    You, Changfu
    ENERGIES, 2022, 15 (21)
  • [22] Hydrogen-Rich Syngas Production through Synergistic Methane-Activated Catalytic Biomass Gasification
    Lalsare, Amoolya
    Wang, Yuxin
    Li, Qingyuan
    Sivri, Ali
    Vukmanovich, Roman J.
    Dumitrescu, Cosmin E.
    Hu, Jianli
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (19): : 16060 - 16071
  • [23] Oxygen blown steam gasification of different kinds of lignocellulosic biomass for the production of hydrogen-rich syngas
    Mu, Qingnan
    Aleem, Rao Danish
    Liu, Chang
    Elendu, Collins Chimezie
    Cao, Changqing
    Duan, Pei-Gao
    RENEWABLE ENERGY, 2024, 232
  • [24] Thermodynamic simulation of the co-gasification of biomass and plastic waste for hydrogen-rich syngas production
    Kaydouh, Marie-Nour
    El Hassan, Nissrine
    RESULTS IN ENGINEERING, 2022, 16
  • [25] Hydrogen-rich syngas production from biomass gasification using biochar-based nanocatalysts
    Yang, Guang
    Hu, Qiang
    Hu, Junhao
    Yang, Haiping
    Yan, Shuhang
    Chen, Yingquan
    Wang, Xianhua
    Chen, Hanping
    BIORESOURCE TECHNOLOGY, 2023, 379
  • [26] Steam gasification of rapeseed, wood, sewage sludge and miscanthus biochars for the production of a hydrogen-rich syngas
    Sattar, Anwar
    Leeke, Gary A.
    Hornung, Andreas
    Wood, Joseph
    BIOMASS & BIOENERGY, 2014, 69 : 276 - 286
  • [27] An analysis of waste/biomass gasification producing hydrogen-rich syngas: A review
    Makwana J.
    Dhass A.D.
    Ramana P.V.
    Sapariya D.
    Patel D.
    International Journal of Thermofluids, 2023, 20
  • [28] Exergy analysis of biomass staged-gasification for hydrogen-rich syngas
    Li, Qiao
    Song, Guohui
    Xiao, Jun
    Sun, Tingting
    Yang, Kai
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (05) : 2569 - 2579
  • [29] Hydrogen-rich syngas produced by catalytic steam gasification of corncob char
    Ning, Siyun
    Jia, Shuang
    Ying, Hao
    Sun, Yunjuan
    Xu, Wei
    Yin, Hang
    BIOMASS & BIOENERGY, 2018, 117 : 131 - 136
  • [30] Hydrothermal gasification of waste biomass and plastics into hydrogen-rich syngas: a review
    Kumar, Pankaj
    Dave, Ayush
    Reddy, Sivamohan N.
    Nanda, Sonil
    ENVIRONMENTAL CHEMISTRY LETTERS, 2025, 23 (01) : 117 - 138