Genome-wide association study for grain yield and component traits in bread wheat (Triticum aestivum L.)

被引:27
|
作者
Khan, Hanif [1 ]
Krishnappa, Gopalareddy [1 ,2 ]
Kumar, Satish [1 ]
Mishra, Chandra Nath [1 ]
Krishna, Hari [3 ]
Devate, Narayana Bhat [3 ]
Rathan, Nagenahalli Dharmegowda [3 ]
Parkash, Om [1 ]
Yadav, Sonu Singh [1 ]
Srivastava, Puja [4 ]
Biradar, Suma [5 ]
Kumar, Monu [6 ]
Singh, Gyanendra Pratap [1 ]
机构
[1] ICAR Indian Inst Wheat & Barley Res, Karnal, India
[2] ICAR Sugarcane Breeding Inst, Coimbatore, India
[3] ICAR Indian Agr Res Inst, New Delhi, India
[4] Punjab Agr Univ PAU, Ludhiana, India
[5] Univ Agr Sci, Dharwad, India
[6] ICAR Indian Agr Res Inst, Jharkhand, India
关键词
wheat; GWAS; SNPs; candidate genes; mapping; yield component traits; AGRONOMIC TRAITS; SPRING WHEAT; GENE; GENOTYPE; LOCI;
D O I
10.3389/fgene.2022.982589
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Genomic regions governing days to heading (DH), grain filling duration (GFD), grain number per spike (GNPS), grain weight per spike (GWPS), plant height (PH), and grain yield (GY) were investigated in a set of 280 diverse bread wheat genotypes. The genome-wide association studies (GWAS) panel was genotyped using a 35K Axiom Array and phenotyped in five environments. The GWAS analysis showed a total of 27 Bonferroni-corrected marker-trait associations (MTAs) on 15 chromosomes representing all three wheat subgenomes. The GFD showed the highest MTAs (8), followed by GWPS (7), GY (4), GNPS (3), PH (3), and DH (2). Furthermore, 20 MTAs were identified with more than 10% phenotypic variation. A total of five stable MTAs (AX-95024590, AX-94425015, AX-95210025 AX-94539354, and AX-94978133) were identified in more than one environment and associated with the expression of DH, GFD, GNPS, and GY. Similarly, two novel pleiotropic genomic regions with associated MTAs i.e. AX-94978133 (4D) and AX-94539354 (6A) harboring co-localized QTLs governing two or more traits were also identified. In silico analysis revealed that the SNPs were located on important putative candidate genes such as F-box-like domain superfamily, Lateral organ boundaries, LOB, Thioredoxin-like superfamily Glutathione S-transferase, RNA-binding domain superfamily, UDP-glycosyltransferase family, Serine/threonine-protein kinase, Expansin, Patatin, Exocyst complex component Exo70, DUF1618 domain, Protein kinase domain involved in the regulation of grain size, grain number, growth and development, grain filling duration, and abiotic stress tolerance. The identified novel MTAs will be validated to estimate their effects in different genetic backgrounds for subsequent use in marker-assisted selection (MAS).
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Genome-Wide Identification and Characterization of the Cystatin Gene Family in Bread Wheat (Triticum aestivum L.)
    He, Long
    Chen, Xuan
    Xu, Miaoze
    Liu, Tingting
    Zhang, Tianye
    Li, Juan
    Yang, Jian
    Chen, Jianping
    Zhong, Kaili
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (19)
  • [32] Genome-wide association study reveals structural chromosome variations with phenotypic effects in wheat (Triticum aestivum L.)
    Zhao, Jiajia
    Zheng, Xingwei
    Qiao, Ling
    Yang, Chenkang
    Wu, Bangbang
    He, Ziming
    Tang, Yuqing
    Li, Guangrong
    Yang, Zujun
    Zheng, Jun
    Qi, Zengjun
    PLANT JOURNAL, 2022, 112 (06) : 1447 - 1461
  • [33] Genome-Wide Association Study of Yield and Component Traits in Pacific Northwest Winter Wheat
    Gizaw, Shiferaw A.
    Godoy, Jayfred Gaham V.
    Garland-Campbell, Kimberly
    Carter, Arron H.
    CROP SCIENCE, 2018, 58 (06) : 2315 - 2330
  • [34] Genetic dissection of grain iron concentration in hexaploid wheat (Triticum aestivum L.) using a genome-wide association analysis method
    Wang, Jiansheng
    Shi, Xia
    Zhou, Zhengfu
    Qin, Maomao
    Wang, Yahuan
    Li, Wenxu
    Yang, Pan
    Wu, Zhengqing
    Lei, Zhensheng
    PEERJ, 2022, 10
  • [35] Genome-wide association analysis for stripe rust resistance in spring wheat(Triticum aestivum L.) germplasm
    Sher MUHAMMAD
    Muhammad SAJJAD
    Sultan Habibullah KHAN
    Muhammad SHAHID
    Muhammad ZUBAIR
    Faisal Saeed AWAN
    Azeem iqbal KHAN
    Muhammad Salman MUBARAK
    Ayesha TAHIR
    Muhammad UMER
    Rumana KEYANI
    Muhammad InamAFZAL
    Irfan MANZOOR
    Javed Iqbal WATTOO
    Aziz-ur REHMAN
    Journal of Integrative Agriculture, 2020, 19 (08) : 2035 - 2043
  • [36] Genome-wide association analysis for stripe rust resistance in spring wheat (Triticum aestivum L.) germplasm
    Muhammad, Sher
    Sajjad, Muhammad
    Khan, Sultan Habibullah
    Shahid, Muhammad
    Zubair, Muhammad
    Awan, Faisal Saeed
    Khan, Azeem Iqbal
    Mubarak, Muhammad Salman
    Tahir, Ayesha
    Umer, Muhammad
    Keyani, Rumana
    Afzal, Muhammad Inam
    Manzoor, Irfan
    Wattoo, Javed Iqbal
    Rehman, Aziz-ur
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2020, 19 (08) : 2035 - 2043
  • [37] Genome-wide association mapping of arabinoxylan and resistant starch concentration in common wheat (Triticum aestivum L.)
    Jiang, Xiaoling
    Deng, Zhiying
    Chen, Guangfeng
    Hu, Haiyan
    Geng, Yanyan
    Zhang, Ziyang
    Li, Hongmin
    Zhao, Jishun
    CEREAL RESEARCH COMMUNICATIONS, 2024, 52 (03) : 949 - 959
  • [38] A GBS-based genome-wide association study reveals the genetic basis of salinity tolerance at the seedling stage in bread wheat (Triticum aestivum L.)
    Akram, Saba
    Ghaffar, Maria
    Wadood, Ayesha
    Shokat, Sajid
    Hameed, Amjad
    Waheed, Muhammad Qandeel
    Arif, Mian Abdur Rehman
    FRONTIERS IN GENETICS, 2022, 13
  • [39] Genome-wide linkage mapping of QTL for black point reaction in bread wheat (Triticum aestivum L.)
    Liu, Jindong
    He, Zhonghu
    Wu, Ling
    Bai, Bin
    Wen, Weie
    Xie, Chaojie
    Xia, Xianchun
    THEORETICAL AND APPLIED GENETICS, 2016, 129 (11) : 2179 - 2190
  • [40] Genome-Wide Identification and Analysis of GHMP Kinase Gene Superfamily in Bread Wheat (Triticum aestivum L.)
    Neha Thakur
    Pankaj K. Flowerika
    Karambir Singh
    Siddharth Kaur
    Plant Molecular Biology Reporter, 2021, 39 : 455 - 470