Genome-wide association study for grain yield and component traits in bread wheat (Triticum aestivum L.)

被引:26
|
作者
Khan, Hanif [1 ]
Krishnappa, Gopalareddy [1 ,2 ]
Kumar, Satish [1 ]
Mishra, Chandra Nath [1 ]
Krishna, Hari [3 ]
Devate, Narayana Bhat [3 ]
Rathan, Nagenahalli Dharmegowda [3 ]
Parkash, Om [1 ]
Yadav, Sonu Singh [1 ]
Srivastava, Puja [4 ]
Biradar, Suma [5 ]
Kumar, Monu [6 ]
Singh, Gyanendra Pratap [1 ]
机构
[1] ICAR Indian Inst Wheat & Barley Res, Karnal, India
[2] ICAR Sugarcane Breeding Inst, Coimbatore, India
[3] ICAR Indian Agr Res Inst, New Delhi, India
[4] Punjab Agr Univ PAU, Ludhiana, India
[5] Univ Agr Sci, Dharwad, India
[6] ICAR Indian Agr Res Inst, Jharkhand, India
关键词
wheat; GWAS; SNPs; candidate genes; mapping; yield component traits; AGRONOMIC TRAITS; SPRING WHEAT; GENE; GENOTYPE; LOCI;
D O I
10.3389/fgene.2022.982589
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Genomic regions governing days to heading (DH), grain filling duration (GFD), grain number per spike (GNPS), grain weight per spike (GWPS), plant height (PH), and grain yield (GY) were investigated in a set of 280 diverse bread wheat genotypes. The genome-wide association studies (GWAS) panel was genotyped using a 35K Axiom Array and phenotyped in five environments. The GWAS analysis showed a total of 27 Bonferroni-corrected marker-trait associations (MTAs) on 15 chromosomes representing all three wheat subgenomes. The GFD showed the highest MTAs (8), followed by GWPS (7), GY (4), GNPS (3), PH (3), and DH (2). Furthermore, 20 MTAs were identified with more than 10% phenotypic variation. A total of five stable MTAs (AX-95024590, AX-94425015, AX-95210025 AX-94539354, and AX-94978133) were identified in more than one environment and associated with the expression of DH, GFD, GNPS, and GY. Similarly, two novel pleiotropic genomic regions with associated MTAs i.e. AX-94978133 (4D) and AX-94539354 (6A) harboring co-localized QTLs governing two or more traits were also identified. In silico analysis revealed that the SNPs were located on important putative candidate genes such as F-box-like domain superfamily, Lateral organ boundaries, LOB, Thioredoxin-like superfamily Glutathione S-transferase, RNA-binding domain superfamily, UDP-glycosyltransferase family, Serine/threonine-protein kinase, Expansin, Patatin, Exocyst complex component Exo70, DUF1618 domain, Protein kinase domain involved in the regulation of grain size, grain number, growth and development, grain filling duration, and abiotic stress tolerance. The identified novel MTAs will be validated to estimate their effects in different genetic backgrounds for subsequent use in marker-assisted selection (MAS).
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Genome-wide association study for grain zinc concentration in bread wheat (Triticum aestivum L.)
    Ma, Jianhui
    Ye, Miaomiao
    Liu, Qianqian
    Yuan, Meng
    Zhang, Daijing
    Li, Chunxi
    Zeng, Qingdong
    Wu, Jianhui
    Han, Dejun
    Jiang, Lina
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [2] Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.)
    K. Neumann
    B. Kobiljski
    S. Denčić
    R. K. Varshney
    A. Börner
    Molecular Breeding, 2011, 27 : 37 - 58
  • [3] Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.)
    Neumann, K.
    Kobiljski, B.
    Dencic, S.
    Varshney, R. K.
    Boerner, A.
    MOLECULAR BREEDING, 2011, 27 (01) : 37 - 58
  • [4] Genome-wide association for growth habit in bread wheat (Triticum aestivum L.)
    Gomez-Espejo, Ana L.
    Sansaloni, Carolina P.
    Burgueno, Juan
    Toledo, Fernando H.
    Humberto Reyes-Valdes, M.
    ECOSISTEMAS Y RECURSOS AGROPECUARIOS, 2021, 8 (02):
  • [5] Genome-wide association study identifies loci and candidate genes for grain micronutrients and quality traits in wheat (Triticum aestivum L.)
    Nagenahalli Dharmegowda Rathan
    Hari Krishna
    Ranjith Kumar Ellur
    Deepmala Sehgal
    Velu Govindan
    Arvind Kumar Ahlawat
    Gopalareddy Krishnappa
    Jai Prakash Jaiswal
    Jang Bahadur Singh
    Saiprasad SV
    Divya Ambati
    Sumit Kumar Singh
    Kriti Bajpai
    Anju Mahendru-Singh
    Scientific Reports, 12
  • [6] Genome-wide association study identifies loci and candidate genes for grain micronutrients and quality traits in wheat (Triticum aestivum L.)
    Rathan, Nagenahalli Dharmegowda
    Krishna, Hari
    Ellur, Ranjith Kumar
    Sehgal, Deepmala
    Govindan, Velu
    Ahlawat, Arvind Kumar
    Krishnappa, Gopalareddy
    Jaiswal, Jai Prakash
    Singh, Jang Bahadur
    Sv, Saiprasad
    Ambati, Divya
    Singh, Sumit Kumar
    Bajpai, Kriti
    Mahendru-Singh, Anju
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [7] Genome-Wide Association Study (GWAS) and genome prediction of seedling salt tolerance in bread wheat (Triticum aestivum L.)
    Javid, Saeideh
    Bihamta, Mohammad Reza
    Omidi, Mansour
    Abbasi, Ali Reza
    Alipour, Hadi
    Ingvarsson, Paer K.
    BMC PLANT BIOLOGY, 2022, 22 (01)
  • [8] Genome-Wide Association Study (GWAS) and genome prediction of seedling salt tolerance in bread wheat (Triticum aestivum L.)
    Saeideh Javid
    Mohammad Reza Bihamta
    Mansour Omidi
    Ali Reza Abbasi
    Hadi Alipour
    Pär K. Ingvarsson
    BMC Plant Biology, 22
  • [9] Genome-Wide Association Study of Kernel Traits Using a 35K SNP Array in Bread Wheat (Triticum aestivum L.)
    Wang, Peng
    Tian, Tian
    Ma, Jingfu
    Liu, Yuan
    Zhang, Peipei
    Chen, Tao
    Shahinnia, Fahimeh
    Yang, Delong
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [10] Genome wide association study of grain yield and yield related traits in spring bread wheat (Triticum aestivum L.) under drought and heat conditions in three different locations
    El Gataa Z.
    El Hanafi S.
    Basheer F.
    Kehel Z.
    bouhouch Y.
    El Messoadi K.
    Eddakir K.
    Ladraa N.
    Samir K.
    Tadesse W.
    Journal of Crop Science and Biotechnology, 2021, 24 (4) : 361 - 373