ReadZS detects cell type-specific and developmentally regulated RNA processing programs in single-cell RNA-seq

被引:3
|
作者
Meyer, Elisabeth [1 ,2 ]
Chaung, Kaitlin [1 ,2 ]
Dehghannasiri, Roozbeh [1 ,2 ]
Salzman, Julia [1 ,2 ,3 ]
机构
[1] Stanford Univ, Dept Biochem, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Stat Courtesy, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
scRNA-seq; Differential RNA processing; Alternative polyadenylation; Untranslated regions; 3' UNTRANSLATED REGIONS; ALTERNATIVE POLYADENYLATION; MESSENGER-RNAS; GREATWALL;
D O I
10.1186/s13059-022-02795-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
RNA processing, including splicing and alternative polyadenylation, is crucial to gene function and regulation, but methods to detect RNA processing from single-cell RNA sequencing data are limited by reliance on pre-existing annotations, peak calling heuristics, and collapsing measurements by cell type. We introduce ReadZS, an annotation-free statistical approach to identify regulated RNA processing in single cells. ReadZS discovers cell type-specific RNA processing in human lung and conserved, developmentally regulated RNA processing in mammalian spermatogenesis-including global 3 ' UTR shortening in human spermatogenesis. ReadZS also discovers global 3 ' UTR lengthening in Arabidopsis development, highlighting the usefulness of this method in under-annotated transcriptomes.
引用
收藏
页数:28
相关论文
共 50 条
  • [11] Correlation Imputation for Single-Cell RNA-seq
    Gan, Luqin
    Vinci, Giuseppe
    Allen, Genevera I.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (05) : 465 - 482
  • [12] Decontamination of ambient RNA in single-cell RNA-seq with DecontX
    Shiyi Yang
    Sean E. Corbett
    Yusuke Koga
    Zhe Wang
    W Evan Johnson
    Masanao Yajima
    Joshua D. Campbell
    Genome Biology, 21
  • [13] Decontamination of ambient RNA in single-cell RNA-seq with DecontX
    Yang, Shiyi
    Corbett, Sean E.
    Koga, Yusuke
    Wang, Zhe
    Johnson, W. Evan
    Yajima, Masanao
    Campbell, Joshua D.
    GENOME BIOLOGY, 2020, 21 (01)
  • [14] PRECISION AND ACCURACY IN SINGLE-CELL RNA-SEQ
    Dai, Rujia
    Zhang, Ming
    Chu, Tianyao
    Kopp, Richard
    Zhang, Chunling
    Liu, Kefu
    Wang, Yue
    Wang, Xusheng
    Chen, Chao
    Liu, Chunyu
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2024, 87 : 21 - 21
  • [15] Single-cell RNA-seq—now with protein
    Vesna Todorovic
    Nature Methods, 2017, 14 : 1028 - 1029
  • [16] Generalized Cell Type Annotation and Discovery for Single-Cell RNA-Seq Data
    Zhai, Yuyao
    Chen, Liang
    Deng, Minghua
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 4, 2023, : 5402 - 5410
  • [17] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Peng, Tao
    Zhu, Qin
    Yin, Penghang
    Tan, Kai
    GENOME BIOLOGY, 2019, 20 (1)
  • [18] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Tao Peng
    Qin Zhu
    Penghang Yin
    Kai Tan
    Genome Biology, 20
  • [19] HArmonized single-cell RNA-seq Cell type Assisted Deconvolution (HASCAD)
    Yen-Jung Chiu
    Chung-En Ni
    Yen-Hua Huang
    BMC Medical Genomics, 16
  • [20] Improving replicability in single-cell RNA-Seq cell type discovery with Dune
    de Bezieux, Hector Roux
    Street, Kelly
    Fischer, Stephan
    Van den Berge, Koen
    Chance, Rebecca
    Risso, Davide
    Gillis, Jesse
    Ngai, John
    Purdom, Elizabeth
    Dudoit, Sandrine
    BMC BIOINFORMATICS, 2024, 25 (01):