ReadZS detects cell type-specific and developmentally regulated RNA processing programs in single-cell RNA-seq

被引:3
|
作者
Meyer, Elisabeth [1 ,2 ]
Chaung, Kaitlin [1 ,2 ]
Dehghannasiri, Roozbeh [1 ,2 ]
Salzman, Julia [1 ,2 ,3 ]
机构
[1] Stanford Univ, Dept Biochem, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Stat Courtesy, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
scRNA-seq; Differential RNA processing; Alternative polyadenylation; Untranslated regions; 3' UNTRANSLATED REGIONS; ALTERNATIVE POLYADENYLATION; MESSENGER-RNAS; GREATWALL;
D O I
10.1186/s13059-022-02795-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
RNA processing, including splicing and alternative polyadenylation, is crucial to gene function and regulation, but methods to detect RNA processing from single-cell RNA sequencing data are limited by reliance on pre-existing annotations, peak calling heuristics, and collapsing measurements by cell type. We introduce ReadZS, an annotation-free statistical approach to identify regulated RNA processing in single cells. ReadZS discovers cell type-specific RNA processing in human lung and conserved, developmentally regulated RNA processing in mammalian spermatogenesis-including global 3 ' UTR shortening in human spermatogenesis. ReadZS also discovers global 3 ' UTR lengthening in Arabidopsis development, highlighting the usefulness of this method in under-annotated transcriptomes.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] ReadZS detects cell type-specific and developmentally regulated RNA processing programs in single-cell RNA-seq
    Elisabeth Meyer
    Kaitlin Chaung
    Roozbeh Dehghannasiri
    Julia Salzman
    Genome Biology, 23
  • [2] Single-cell RNA-seq reveals cell type-specific molecular and genetic associations to lupus
    Perez, Richard K.
    Gordon, M. Grace
    Subramaniam, Meena
    Kim, Min Cheol
    Hartoularos, George C.
    Targ, Sasha
    Sun, Yang
    Ogorodnikov, Anton
    Bueno, Raymund
    Lu, Andrew
    Thompson, Mike
    Rappoport, Nadav
    Dahl, Andrew
    Lanata, Cristina M.
    Matloubian, Mehrdad
    Maliskova, Lenka
    Kwek, Serena S.
    Li, Tony
    Slyper, Michal
    Waldman, Julia
    Dionne, Danielle
    Rozenblatt-Rosen, Orit
    Fong, Lawrence
    Dall'Era, Maria
    Balliu, Brunilda
    Regev, Aviv
    Yazdany, Jinoos
    Criswell, Lindsey A.
    Zaitlen, Noah
    Ye, Chun Jimmie
    SCIENCE, 2022, 376 (6589) : 153 - +
  • [3] Deconvolution of cell type-specific drug responses in human tumor tissue with single-cell RNA-seq
    Wenting Zhao
    Athanassios Dovas
    Eleonora Francesca Spinazzi
    Hanna Mendes Levitin
    Matei Alexandru Banu
    Pavan Upadhyayula
    Tejaswi Sudhakar
    Tamara Marie
    Marc L. Otten
    Michael B. Sisti
    Jeffrey N. Bruce
    Peter Canoll
    Peter A. Sims
    Genome Medicine, 13
  • [4] Deconvolution of cell type-specific drug responses in human tumor tissue with single-cell RNA-seq
    Zhao, Wenting
    Dovas, Athanassios
    Spinazzi, Eleonora Francesca
    Levitin, Hanna Mendes
    Banu, Matei Alexandru
    Upadhyayula, Pavan
    Sudhakar, Tejaswi
    Marie, Tamara
    Otten, Marc L.
    Sisti, Michael B.
    Bruce, Jeffrey N.
    Canoll, Peter
    Sims, Peter A.
    GENOME MEDICINE, 2021, 13 (01)
  • [5] SINGLE-CELL RNA-SEQ REVEALS IMMUNE AND KIDNEY CELL TYPE-SPECIFIC MOLECULAR ASSOCIATIONS TO IGA NEPHROPATHY
    Zeng, Honghui
    Wang, Le
    Yang, Xiaoqiang
    Luo, Siweier
    Zhou, Yiming
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 2023, 38 : I412 - I412
  • [6] Toward Cell Type-Specific In Vivo Dual RNA-Seq
    Fronicke, Lutz
    Bronner, Denise N.
    Byndloss, Mariana X.
    McLaughlin, Bridget
    Baumler, Andreas J.
    Westermann, Alexander J.
    HIGH-DENSITY SEQUENCING APPLICATIONS IN MICROBIAL MOLECULAR GENETICS, 2018, 612 : 505 - 522
  • [7] scCTS: identifying the cell type-specific marker genes from population-level single-cell RNA-seq
    Chen, Luxiao
    Guo, Zhenxing
    Deng, Tao
    Wu, Hao
    GENOME BIOLOGY, 2024, 25 (01):
  • [8] Single-cell RNA-seq reveals cell type-specific transcriptional signatures at the maternal–foetal interface during pregnancy
    Andrew C. Nelson
    Arne W. Mould
    Elizabeth K. Bikoff
    Elizabeth J. Robertson
    Nature Communications, 7
  • [9] Processing single-cell RNA-seq datasets using SingCellaR
    Wang, Guanlin
    Wen, Wei Xiong
    Mead, Adam J.
    Roy, Anindita
    Psaila, Bethan
    Thongjuea, Supat
    STAR PROTOCOLS, 2022, 3 (02):
  • [10] Single-cell RNA-seq reveals cell type-specific transcriptional signatures at the maternal-foetal interface during pregnancy
    Nelson, Andrew C.
    Mould, Arne W.
    Bikoff, Elizabeth K.
    Robertson, Elizabeth J.
    NATURE COMMUNICATIONS, 2016, 7