Numerical Simulation of High-Performance CsPbI3/FAPbI3 Heterojunction Perovskite Solar Cells

被引:24
作者
Gan, Yongjin [1 ,2 ,3 ]
Zhao, Di [1 ,3 ]
Qin, Binyi [1 ,3 ]
Bi, Xueguang [3 ]
Liu, Yucheng [4 ]
Ning, Weilian [3 ]
Yang, Ruizhao [2 ,3 ]
Jiang, Qubo [5 ]
机构
[1] Yulin Normal Univ, Guangxi Coll & Univ, Key Lab Complex Syst Optimizat & Big Data Proc, Yulin 537000, Peoples R China
[2] Yulin Normal Univ, Optoelect Informat Res Ctr, Yulin 537000, Peoples R China
[3] Yulin Normal Univ, Sch Phys & Telecommun Engn, Yulin 537000, Peoples R China
[4] South Dakota State Univ, Dept Mech Engn, Brookings, SD 57006 USA
[5] Guilin Univ Elect Technol, Optoelect Informat Proc Key Lab Guangxi, Guilin 541004, Peoples R China
关键词
perovskite solar cell; heterojunction; thickness; defect density; work function; temperature; HOLE-TRANSPORT-MATERIAL; CONDUCTION-BAND OFFSET; THEORETICAL-ANALYSIS; EFFICIENCY; LAYERS; ENHANCEMENT; STABILITY; DESIGN; PHASE;
D O I
10.3390/en15197301
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
To broaden the absorption spectrum of cells, enhance the cell stability, and avoid high costs, a novel perovskite solar cell (PSC) with the structure of fluorine-doped tin oxide (FTO)/ZnO/CsPbI3/FAPbI(3)/CuSCN/Au is designed using the solar cell capacitance simulator (SCAPS) software. The simulation results indicate that the CsPbI3/FAPbI(3) heterojunction PSC has higher quantum efficiency (QE) characteristics than the single-junction CsPbI3-based PSC, and it outputs a higher short-circuit current density (J(sc)) and power conversion efficiency (PCE). In order to optimize the device performance, several critical device parameters, including the thickness and defect density of both the CsPbI3 and FAPbI(3) layers, the work function of the contact electrodes, and the operating temperature are systematically investigated. Through the optimum analysis, the thicknesses of CsPbI3 and FAPbI(3) are optimized to be 100 and 700 nm, respectively, so that the cell could absorb photons more sufficiently without an excessively high recombination rate, and the cell achieved the highest PCE. The defect densities of CsPbI3 and FAPbI(3) are set to 10(12) cm(-3) to effectively avoid the excessive carrier recombination centering on the cell to increase the carrier lifetime. Additionally, we found that when the work function of the metal back electrode is greater than 4.8 eV and FTO with a work function of 4.4 eV is selected as the front electrode, the excessively high Schottky barrier could be avoided and the collection of photogenerated carriers could be promoted. In addition, the operating temperature is proportional to the carrier recombination rate, and an excessively high temperature could inhibit V-oc. After implementing the optimized parameters, the cell performance of the studied solar cell was improved. Its PCE reaches 28.75%, which is higher than most of existing solar cells. Moreover, the open circuit voltage (V-oc), J(sc), and PCE are increased by 17%, 9.5%, and 25.1%, respectively. The results of this paper provide a methodology and approach for the construction of high-efficiency heterojunction PSCs.
引用
收藏
页数:18
相关论文
共 66 条
  • [1] Modeling and numerical simulation of high efficiency perovskite solar cell with three active layers
    Abedini-Ahangarkola, Hossein
    Soleimani-Amiri, Samaneh
    Rudi, Somayeh Gholami
    [J]. SOLAR ENERGY, 2022, 236 : 724 - 732
  • [2] High-performance CsPbI3/XPbI3 (X=MA and FA) heterojunction perovskite solar cell
    Akhtarianfar, Seyed Farshad
    Shojaei, Saeid
    Asl, Shahin Khameneh
    [J]. OPTICS COMMUNICATIONS, 2022, 512
  • [3] Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell
    Azri, Faiza
    Meftah, Afak
    Sengouga, Nouredine
    Meftah, Amjad
    [J]. SOLAR ENERGY, 2019, 181 : 372 - 378
  • [4] Efficiency Enhancement of CH3NH3SnI3 Solar Cells by Device Modeling
    Baig, Faisal
    Khattak, Yousaf Hameed
    Mari, Bernabe
    Beg, Saira
    Ahmed, Abrar
    Khan, Khurram
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2018, 47 (09) : 5275 - 5282
  • [5] Investigation of the Surface Coating, Humidity Degradation, and Recovery of Perovskite Film Phase for Solar-Cell Applications
    Bouich, Amal
    Mari-Guaita, Julia
    Baig, Faisal
    Khattak, Yousaf Hameed
    Mari Soucase, Bernabe
    Palacios, Pablo
    [J]. NANOMATERIALS, 2022, 12 (17)
  • [6] Modelling polycrystalline semiconductor solar cells
    Burgelman, M
    Nollet, P
    Degrave, S
    [J]. THIN SOLID FILMS, 2000, 361 : 527 - 532
  • [7] Numerical study of Cs2TiX6 (X = Br-, I-, F- and Cl-) based perovskite solar cell using SCAPS-1D device simulation
    Chakraborty, Kunal
    Choudhury, Mahua Gupta
    Paul, Samrat
    [J]. SOLAR ENERGY, 2019, 194 : 886 - 892
  • [8] Performance analysis of copper-indium-gallium-diselenide (CIGS) solar cells with various buffer layers by SCAPS
    Chelvanathan, Puvaneswaran
    Hossain, Mohammad Istiaque
    Amin, Nowshad
    [J]. CURRENT APPLIED PHYSICS, 2010, 10 (03) : S387 - S391
  • [9] Moisture-tolerant and high-quality α-CsPbI3 films for efficient and stable perovskite solar modules
    Chen, Ruihao
    Hui, Yong
    Wu, Binghui
    Wang, Yongke
    Huang, Xiaofeng
    Xu, Zhongyuan
    Ruan, Pengpeng
    Zhang, Wuyong
    Cheng, Fangwen
    Zhang, Weijie
    Yin, Jun
    Li, Jing
    Zheng, Nanfeng
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (19) : 9597 - 9606
  • [10] Chu S.J., 2011, P 2011 IEEE GREEN TE