Observation of many-body localization of interacting fermions in a quasirandom optical lattice

被引:1314
|
作者
Schreiber, Michael [1 ,2 ]
Hodgman, Sean S. [1 ,2 ]
Bordia, Pranjal [1 ,2 ]
Lueschen, Henrik P. [1 ,2 ]
Fischer, Mark H. [3 ]
Vosk, Ronen [3 ]
Altman, Ehud [3 ]
Schneider, Ulrich [1 ,2 ,4 ]
Bloch, Immanuel [1 ,2 ]
机构
[1] Univ Munich, Fak Phys, D-80799 Munich, Germany
[2] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[3] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-7610001 Rehovot, Israel
[4] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
关键词
ANDERSON LOCALIZATION; ULTRACOLD ATOMS; SYSTEM; GAS; THERMALIZATION; EQUILIBRIUM; RELAXATION; TRANSPORT; INSULATOR; MATTER;
D O I
10.1126/science.aaa7432
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many-body localization (MBL), the disorder-induced localization of interacting particles, signals a breakdown of conventional thermodynamics because MBL systems do not thermalize and show nonergodic time evolution. We experimentally observed this nonergodic evolution for interacting fermions in a one-dimensional quasirandom optical lattice and identified the MBL transition through the relaxation dynamics of an initially prepared charge density wave. For sufficiently weak disorder, the time evolution appears ergodic and thermalizing, erasing all initial ordering, whereas above a critical disorder strength, a substantial portion of the initial ordering persists. The critical disorder value shows a distinctive dependence on the interaction strength, which is in agreement with numerical simulations. Our experiment paves the way to further detailed studies of MBL, such as in noncorrelated disorder or higher dimensions.
引用
收藏
页码:842 / 845
页数:4
相关论文
共 50 条
  • [21] Many-body localization: stability and instability
    De Roeck, Wojciech
    Imbrie, John Z.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 375 (2108):
  • [22] Purification and Many-Body Localization in Cold Atomic Gases
    Andraschko, Felix
    Enss, Tilman
    Sirker, Jesko
    PHYSICAL REVIEW LETTERS, 2014, 113 (21)
  • [23] From Bloch oscillations to many-body localization in clean interacting systems
    van Nieuwenburg, Evert
    Baum, Yuval
    Refael, Gil
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (19) : 9269 - 9274
  • [24] Many-body formalism for fermions: The partition function
    Watson, D. K.
    PHYSICAL REVIEW A, 2017, 96 (03)
  • [25] Spin Localization of a Fermi Polaron in a Quasirandom Optical Lattice
    Duncan, C. W.
    Loft, N. J. S.
    Ohberg, P.
    Zinner, N. T.
    Valiente, M.
    FEW-BODY SYSTEMS, 2017, 58 (02)
  • [26] Direct Observation of Dynamical Quantum Phase Transitions in an Interacting Many-Body System
    Jurcevic, P.
    Shen, H.
    Hauke, P.
    Maier, C.
    Brydges, T.
    Hempel, C.
    Lanyon, B. P.
    Heyl, M.
    Blatt, R.
    Roos, C. F.
    PHYSICAL REVIEW LETTERS, 2017, 119 (08)
  • [27] Dynamics of many-body localization
    Bar Lev, Yevgeny
    Reichman, David R.
    PHYSICAL REVIEW B, 2014, 89 (22)
  • [28] Domain-wall melting as a probe of many-body localization
    Hauschild, Johannes
    Heidrich-Meisner, Fabian
    Pollmann, Frank
    PHYSICAL REVIEW B, 2016, 94 (16)
  • [29] Dynamics of strongly interacting systems: From Fock-space fragmentation to many-body localization
    De Tomasi, Giuseppe
    Hetterich, Daniel
    Sala, Pablo
    Pollmann, Frank
    PHYSICAL REVIEW B, 2019, 100 (21)
  • [30] Quantum engine based on many-body localization
    Halpern, Nicole Yunger
    White, Christopher David
    Gopalakrishnan, Sarang
    Refael, Gil
    PHYSICAL REVIEW B, 2019, 99 (02)