HARMONIC OSCILLATOR CHAIN IN NONCOMMUTATIVE PHASE SPACE WITH ROTATIONAL SYMMETRY

被引:1
作者
Gnatenko, Kh P. [1 ,2 ]
机构
[1] Ivan Franko Natl Univ Lviv, Dept Theoret Phys, 12 Drahomanov Str, UA-79005 Lvov, Ukraine
[2] Nat Acad Sci Ukraine, Lab Stat Phys Complex Syst, Inst Condensed Matter Phys, 1 Svientsitskii Str, UA-79011 Lvov, Ukraine
来源
UKRAINIAN JOURNAL OF PHYSICS | 2019年 / 64卷 / 02期
关键词
harmonic oscillator; composite system; tensors of noncommutativity; 2-PHOTON QUANTUM OPTICS; HYDROGEN-ATOM; MECHANICS; DYNAMICS; QUANTIZATION; FORMALISM; PARTICLES;
D O I
10.15407/ujpe64.2.131
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a quantum space with a rotationally invariant noncommutative algebra of coordinates and momenta. The algebra contains the constructed tensors of noncommutativity involving additional coordinates and momenta. In the rotationally invariant noncommutative phase space, the harmonic oscillator chain is studied. We obtain that the noncommutativity affects the frequencies of the system. In the case of a chain of particles with harmonic oscillator interaction, we conclude that, due to the noncommutativity of momenta, the spectrum of the center-of-mass of the system is discrete and corresponds to the spectrum of a harmonic oscillator.
引用
收藏
页码:131 / 136
页数:6
相关论文
共 62 条
  • [1] Analytical and numerical analysis of a rotational invariant D=2 harmonic oscillator in the light of different noncommutative phase-space configurations
    Abreu, Everton M. C.
    Marcial, Mateus V.
    Mendes, Albert C. R.
    Oliveira, Wilson
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (11):
  • [2] Anisotropic harmonic oscillator, non-commutative Landau problem and exotic Newton-Hooke symmetry
    Alvarez, Pedro D.
    Gomis, Joaquim
    Kamimura, Kiyoshi
    Plyushchay, Mikhail S.
    [J]. PHYSICS LETTERS B, 2008, 659 (05) : 906 - 912
  • [3] Tensor operators in noncommutative quantum mechanics
    Amorim, Ricardo
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (08)
  • [4] [Anonymous], 1999, Journal of High Energy Physics
  • [5] Entanglement properties of the harmonic chain
    Audenaert, K
    Eisert, J
    Plenio, MB
    Werner, RR
    [J]. PHYSICAL REVIEW A, 2002, 66 (04): : 14
  • [6] Non-Pauli effects from noncommutative spacetimes
    Balachandran, A. P.
    Padmanabhan, Pramod
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2010, (12):
  • [7] Probing deformed commutators with macroscopic harmonic oscillators
    Bawaj, Mateusz
    Biancofiore, Ciro
    Bonaldi, Michele
    Bonfigli, Federica
    Borrielli, Antonio
    Di Giuseppe, Giovanni
    Marconi, Lorenzo
    Marino, Francesco
    Natali, Riccardo
    Pontin, Antonio
    Prodi, Giovanni A.
    Serra, Enrico
    Vitali, David
    Marin, Francesco
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [8] Harmonic oscillator in a background magnetic field in noncommutative quantum phase-space
    Ben Geloun, J.
    Gangopadhyay, Sunandan
    Scholtz, F. G.
    [J]. EPL, 2009, 86 (05)
  • [9] Phase-space noncommutativity and the Dirac equation
    Bertolami, Orfeu
    Queiroz, Raquel
    [J]. PHYSICS LETTERS A, 2011, 375 (46) : 4116 - 4119
  • [10] Constraints on the quantum gravity scale from κ-Minkowski spacetime
    Borowiec, A.
    Gupta, Kumar S.
    Meljanac, S.
    Pachol, A.
    [J]. EPL, 2010, 92 (02)