Upper bounds on the satisfiability threshold

被引:15
作者
Dubois, O [1 ]
机构
[1] Univ Paris 06, CNRS, LIP6, F-75252 Paris 05, France
关键词
satisfiability; SAT threshold; phase transition; upper bounds;
D O I
10.1016/S0304-3975(01)00161-X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a survey of upper bounds which has been established up to now on the satisfiability threshold of random k-SAT formulae. The ideas which led to these bounds and the techniques used to obtain them, are explained. A companion paper in this volume present a survey of the lower bounds. (C) 2001 Elsevier Science BY. All rights reserved.
引用
收藏
页码:187 / 197
页数:11
相关论文
共 37 条
[1]   Lower bounds for random 3-SAT via differential equations [J].
Achlioptas, D .
THEORETICAL COMPUTER SCIENCE, 2001, 265 (1-2) :159-185
[2]  
ACHLIOPTAS D, 2000, 32 ACM S THEOR COMP
[3]   The scaling window of the 2-SAT transition [J].
Bollobás, B ;
Borgs, C ;
Chayes, JT ;
Kim, JH ;
Wilson, DB .
RANDOM STRUCTURES & ALGORITHMS, 2001, 18 (03) :201-256
[4]   Length of prime implicants and number of solutions of random CNF formulae [J].
Boufkhad, Y ;
Dubois, O .
THEORETICAL COMPUTER SCIENCE, 1999, 215 (1-2) :1-30
[5]  
BRODER AZ, 1993, PROCEEDINGS OF THE FOURTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P322
[6]   PROBABILISTIC ANALYSIS OF 2 HEURISTICS FOR THE 3-SATISFIABILITY PROBLEM [J].
CHAO, MT ;
FRANCO, J .
SIAM JOURNAL ON COMPUTING, 1986, 15 (04) :1106-1118
[7]  
CHAO MT, 1990, INFORM SCIENCES, V51, P289, DOI 10.1016/0020-0255(90)90030-E
[8]   MANY HARD EXAMPLES FOR RESOLUTION [J].
CHVATAL, V ;
SZEMEREDI, E .
JOURNAL OF THE ACM, 1988, 35 (04) :759-768
[9]  
CHVATAL V, 1992, AN S FDN CO, P620
[10]  
CRAWFORD JM, 1996, ARTIF INTELL, V57, P81