RESIDUAL ENERGY IN MAGNETOHYDRODYNAMIC TURBULENCE

被引:36
|
作者
Wang, Yuxuan [1 ]
Boldyrev, Stanislav [1 ,2 ]
Perez, Jean Carlos [1 ,3 ,4 ]
机构
[1] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
[2] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[3] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA
[4] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA
基金
美国国家科学基金会;
关键词
magnetohydrodynamics (MHD); methods: statistical; plasmas; turbulence; waves; ALFVEN-WAVE TURBULENCE; SOLAR-WIND TURBULENCE; REDUCED MAGNETOHYDRODYNAMICS; ANISOTROPIC TURBULENCE; NUMERICAL SIMULATIONS; ASTROPHYSICAL PLASMAS; WEAK TURBULENCE; MAGNETIC-FIELD; MHD TURBULENCE; INTERMITTENCY;
D O I
10.1088/2041-8205/740/2/L36
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
There is mounting evidence in solar wind observations and in numerical simulations that kinetic and magnetic energies are not in equipartition in magnetohydrodynamic (MHD) turbulence. The origin of their mismatch, the residual energy E-r = E-v - E-b, is not understood well. In the present work this effect is studied analytically in the regime of weak MHD turbulence. We find that residual energy is spontaneously generated by turbulent dynamics, and it has a negative sign, in good agreement with the observations. We find that the residual energy condenses around k(parallel to) = 0 with its k(parallel to)-spectrum broadening linearly with k(perpendicular to), where k(parallel to) and k(perpendicular to) are the wavenumbers parallel and perpendicular to the background magnetic field, and the field-perpendicular spectrum of the residual energy has the scaling E-r(k(perpendicular to)) alpha k(perpendicular to)(-1) in the inertial interval. These results are found to be in agreement with numerical simulations. We propose that residual energy plays a fundamental role in Alfvenic turbulence and it should be taken into account for the correct interpretation of observational and numerical data.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] RESIDUAL ENERGY SPECTRUM OF SOLAR WIND TURBULENCE
    Chen, C. H. K.
    Bale, S. D.
    Salem, C. S.
    Maruca, B. A.
    ASTROPHYSICAL JOURNAL, 2013, 770 (02)
  • [2] ANISOTROPIC INTERMITTENCY OF MAGNETOHYDRODYNAMIC TURBULENCE
    Osman, K. T.
    Kiyani, K. H.
    Chapman, S. C.
    Hnat, B.
    ASTROPHYSICAL JOURNAL LETTERS, 2014, 783 (02)
  • [3] ENERGY DISSIPATION IN MAGNETOHYDRODYNAMIC TURBULENCE: COHERENT STRUCTURES OR ''NANOFLARES''?
    Zhdankin, Vladimir
    Boldyrev, Stanislav
    Perez, Jean Carlos
    Tobias, Steven M.
    ASTROPHYSICAL JOURNAL, 2014, 795 (02)
  • [4] On the Energy Spectrum of Strong Magnetohydrodynamic Turbulence
    Perez, Jean Carlos
    Mason, Joanne
    Boldyrev, Stanislav
    Cattaneo, Fausto
    PHYSICAL REVIEW X, 2012, 2 (04):
  • [5] SPECTRAL SCALING LAWS IN MAGNETOHYDRODYNAMIC TURBULENCE SIMULATIONS AND IN THE SOLAR WIND
    Boldyrev, Stanislav
    Perez, Jean Carlos
    Borovsky, Joseph E.
    Podesta, John J.
    ASTROPHYSICAL JOURNAL LETTERS, 2011, 741 (01)
  • [6] NUMERICAL SIMULATIONS OF IMBALANCED STRONG MAGNETOHYDRODYNAMIC TURBULENCE
    Perez, Jean Carlos
    Boldyrev, Stanislav
    ASTROPHYSICAL JOURNAL LETTERS, 2010, 710 (01): : L63 - L66
  • [7] Theory and Transport of Nearly Incompressible Magnetohydrodynamic Turbulence
    Zank, G. P.
    Adhikari, L.
    Hunana, P.
    Shiota, D.
    Bruno, R.
    Telloni, D.
    ASTROPHYSICAL JOURNAL, 2017, 835 (02)
  • [8] PERPENDICULAR ION HEATING BY REDUCED MAGNETOHYDRODYNAMIC TURBULENCE
    Xia, Qian
    Perez, Jean C.
    Chandran, Benjamin D. G.
    Quataert, Eliot
    ASTROPHYSICAL JOURNAL, 2013, 776 (02)
  • [9] INHOMOGENEOUS NEARLY INCOMPRESSIBLE DESCRIPTION OF MAGNETOHYDRODYNAMIC TURBULENCE
    Hunana, P.
    Zank, G. P.
    ASTROPHYSICAL JOURNAL, 2010, 718 (01) : 148 - 167
  • [10] DISTRIBUTION OF MAGNETIC DISCONTINUITIES IN THE SOLAR WIND AND IN MAGNETOHYDRODYNAMIC TURBULENCE
    Zhdankin, Vladimir
    Boldyrev, Stanislav
    Mason, Joanne
    ASTROPHYSICAL JOURNAL LETTERS, 2012, 760 (02)