A Bayesian Analysis in the Presence of Covariates for Multivariate Survival Data: An example of Application

被引:0
|
作者
Santos, Carlos Aparecido [1 ]
Achcar, Jorge Alberto [2 ]
机构
[1] Univ Estadual Maringa, Ctr Ciencias Exatas, Dept Estat, Maringa, Parana, Brazil
[2] Univ Sao Paulo, Fac Med Ribeirao Preto, Dept Med Social, BR-14049 Ribeirao Preto, SP, Brazil
来源
REVISTA COLOMBIANA DE ESTADISTICA | 2011年 / 34卷 / 01期
关键词
Bayesian methods; Bivariate distribution; MCMC methods; Survival distribution; Weibull distribution; REGRESSION; MODELS;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we introduce a Bayesian analysis for survival multivariate data in the presence of a covariate vector and censored observations. Different "frailties" or latent variables are considered to capture the correlation among the survival times for the same individual. We assume Weibull or generalized Gamma distributions considering right censored lifetime data. We develop the Bayesian analysis using Markov Chain Monte Carlo (MCMC) methods.
引用
收藏
页码:111 / 131
页数:21
相关论文
共 50 条
  • [21] Bayesian analysis of survival data with missing censoring indicators
    Brownstein, Naomi C.
    Bunn, Veronica
    Castro, Luis M.
    Sinha, Debajyoti
    BIOMETRICS, 2021, 77 (01) : 305 - 315
  • [22] Boral - Bayesian Ordination and Regression Analysis of Multivariate Abundance Data in r
    Hui, Francis K. C.
    METHODS IN ECOLOGY AND EVOLUTION, 2016, 7 (06): : 744 - 750
  • [23] Analysis of Gamma andWeibull lifetime data under a general censoring scheme and in the presence of covariates
    Bennett, Nathan
    Iyer, Srikanth K.
    Jammalamadaka, S. Rao
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (05) : 2277 - 2289
  • [24] Improved methods for the marginal analysis of longitudinal data in the presence of time-dependent covariates
    Chen, I-Chen
    Westgate, Philip M.
    STATISTICS IN MEDICINE, 2017, 36 (16) : 2533 - 2546
  • [25] Marginal quantile regression for longitudinal data analysis in the presence of time-dependent covariates
    Chen, I-Chen
    Westgate, Philip M.
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2021, 17 (02) : 267 - 282
  • [26] Iterative Bayesian Model Averaging: a method for the application of survival analysis to high-dimensional microarray data
    Annest, Amalia
    Bumgarner, Roger E.
    Raftery, Adrian E.
    Yeung, Ka Yee
    BMC BIOINFORMATICS, 2009, 10
  • [27] Bayesian spatial homogeneity pursuit for survival data with an application to the SEER respiratory cancer data
    Geng, Lijiang
    Hu, Guanyu
    BIOMETRICS, 2022, 78 (02) : 536 - 547
  • [28] Factor Analysis for Multivariate Compositional Data and an Economic Application
    Guan, Rong
    Wang, Huijuan
    Guo, Lijuan
    ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, 2024, 58 (04) : 75 - 90
  • [29] Introduction to the Analysis of Survival Data in the Presence of Competing Risks
    Austin, Peter C.
    Lee, Douglas S.
    Fine, Jason P.
    CIRCULATION, 2016, 133 (06) : 601 - 609
  • [30] A novel dynamic Bayesian network approach for data mining and survival data analysis
    Sheidaei, Ali
    Foroushani, Abbas Rahimi
    Gohari, Kimiya
    Zeraati, Hojjat
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)