Computer-guided library generation applied to the optimization of single-domain antibodies

被引:8
作者
Akiba, Hiroki [1 ,2 ]
Tamura, Hiroko [3 ]
Caaveiro, Jose M. M. [2 ,4 ]
Tsumoto, Kouhei [1 ,2 ,3 ,5 ]
机构
[1] Natl Inst Biomed Innovat Hlth & Nutr, Ctr Drug Design Res, 7-6-8 Saito Asagi, Ibaraki 5670085, Japan
[2] Univ Tokyo, Sch Engn, Dept Bioengn, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
[3] Univ Tokyo, Sch Engn, Dept Chem & Biotechnol, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
[4] Kyushu Univ, Grad Sch Pharmaceut Sci, Dept Global Healthcare, Higashi Ku, 3-1-1 Maidashi, Fukuoka 8128582, Japan
[5] Univ Tokyo, Inst Med Sci, Med Prote Lab, Minato Ku, 4-6-1 Shirokanedai, Tokyo 1088629, Japan
基金
日本学术振兴会;
关键词
alanine scanning; antibody-antigen interaction; antibody engineering; binding hot-spot; binding kinetics; computational mutagenesis; phage display; thermodynamics; AFFINITY MATURATION; PHAGE-DISPLAY; PROTEIN; ELECTROSTATICS; RECOGNITION; IMPROVEMENT; FRAGMENTS; SELECTION; RESIDUES; COMPLEX;
D O I
10.1093/protein/gzaa006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Computer-guided library generation is a plausible strategy to optimize antibodies. Herein, we report the improvement of the affinity of a single-domain camelid antibody for its antigen using such approach. We first conducted experimental and computational alanine scanning to describe the precise energetic profile of the antibody-antigen interaction surface. Based on this characterization, we hypothesized that in-silico mutagenesis could be employed to guide the development of a small library for phage display with the goal of improving the affinity of an antibody for its antigen. Optimized antibody mutants were identified after three rounds of selection, in which an alanine residue at the core of the antibody-antigen interface was substituted by residues with large side-chains, generating diverse kinetic responses, and resulting in greater affinity (>10-fold) for the antigen.
引用
收藏
页码:423 / 431
页数:9
相关论文
共 44 条
  • [11] Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design
    Clark, LA
    Boriack-Sjodin, PA
    Eldredge, J
    Fitch, C
    Friedman, B
    Hanf, KJM
    Jarpe, M
    Liparoto, SF
    Li, Y
    Lugovskoy, A
    Miller, S
    Rushe, M
    Sherman, W
    Simon, K
    Van Vlijmen, H
    [J]. PROTEIN SCIENCE, 2006, 15 (05) : 949 - 960
  • [12] Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies
    De Genst, E
    Silence, K
    Decanniere, K
    Conrath, K
    Loris, R
    Kinne, R
    Muyldermans, S
    Wyns, L
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (12) : 4586 - 4591
  • [13] A single-domain antibody fragment in complex with RNase A: non-canonical loop structures and nanomolar affinity using two CDR loops
    Decanniere, K
    Desmyter, A
    Lauwereys, M
    Ghahroudi, MA
    Muyldermans, S
    Wyns, L
    [J]. STRUCTURE, 1999, 7 (04) : 361 - 370
  • [14] PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations
    Dolinsky, TJ
    Nielsen, JE
    McCammon, JA
    Baker, NA
    [J]. NUCLEIC ACIDS RESEARCH, 2004, 32 : W665 - W667
  • [15] Energetic and kinetic contributions of contact residues of antibody D1.3 in the interaction with lysozyme
    England, P
    Bregegere, F
    Bedouelle, H
    [J]. BIOCHEMISTRY, 1997, 36 (01) : 164 - 172
  • [16] Improving the species cross-reactivity of an antibody using computational design
    Farady, Christopher J.
    Sellers, Benjamin D.
    Jacobson, Matthew P.
    Craik, Charles S.
    [J]. BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2009, 19 (14) : 3744 - 3747
  • [17] An Evaluation of Poisson-Boltzmann Electrostatic Free Energy Calculations through Comparison with Experimental Mutagenesis Data
    Gorham, Ronald D., Jr.
    Kieslich, Chris A.
    Nichols, Aaron
    Sausman, Noriko U.
    Foronda, Marisse
    Morikis, Dimitrios
    [J]. BIOPOLYMERS, 2011, 95 (11) : 746 - 754
  • [18] Antigen recognition by single-domain antibodies: structural latitudes and constraints
    Henry, Kevin A.
    MacKenzie, C. Roger
    [J]. MABS, 2018, 10 (06) : 815 - 826
  • [19] Editorial: Single-Domain Antibodies-Biology, Engineering and Emerging Applications
    Henry, Kevin A.
    MacKenzie, C. Roger
    [J]. FRONTIERS IN IMMUNOLOGY, 2018, 9
  • [20] Site-saturation mutagenesis library construction and screening for specific broad-spectrum single-domain antibodies against multiple Cry1 toxins
    Jiao, Lingxia
    Liu, Yuan
    Zhang, Xiao
    Liu, Beibei
    Zhang, Cunzheng
    Liu, Xianjin
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2017, 101 (15) : 6071 - 6082