Preparation and immobilization of Bi2WO6/BiOI/g-C3N4 nanoparticles for the photocatalytic degradation of tetracycline and municipal waste transfer station leachate

被引:37
|
作者
Chu, Yanyang [1 ]
Fan, Jinruo [1 ]
Wang, Rong [1 ]
Liu, Chang [1 ]
Zheng, Xianglei [1 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Environm & Safety Engn, Qingdao 266042, Shandong, Peoples R China
关键词
Bi2WO6/BiOI/g-C(3)N(4 )photocatalyst; Immobilization; Tetracycline degradation; Leachate degradation; Biodegradability enhancement; HETEROJUNCTION; PERFORMANCE; G-C3N4; WATER; MESH;
D O I
10.1016/j.seppur.2022.121867
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Bi2WO6/BiOI nanoparticles were embedded into graphitic carbon nitride (g-C3N4) to fabricate a new visible-light-driven photocatalyst (Bi2WO6/BiOI/g-C3N4). Furthermore, the immobilization of Bi2WO6/BiOI/g-C3N4 was performed by a new method characterized by using polytetrafluoroethylene (PTFE) as an adhesive agent and boric acid (H3BO3) as a pore-forming agent. Bi2WO6/BiOI/g-C3N4 possesses the higher photocatalytic performance than Bi2WO6/BiOI and g-C3N4 for tetracycline degradation because of the enhancement of light absorption and electron/hole (e(-)/h(+)) pairs separation. After immobilization, Bi2WO6/BiOI/g-C3N4 still remained considerable activity and stability. For the degradation of tetracycline, the immobilized photocatalyst presented the degradation rate of over 90 % within 120 min, whereas the photocatalytic degradation of municipal waste transfer station (MWTS) leachate for 28 h presented the chemical oxygen demand (COD) removal rate of 56.1 % and the total organic carbon (TOC) removal rate of 50.4 %. Additionally, the biodegradability of the two test solutions was enhanced evidently after the photocatalytic degradation. This work mainly provides a new photocatalyst immobilization method to promote the large-scale application of photocatalytic degradation.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Fabrication of g-C3N4/Bi2WO6 as a direct Z-scheme excellent photocatalyst
    Zhao, Ping
    Jin, Bo
    Zhang, Qingchun
    Peng, Rufang
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (12) : 5751 - 5760
  • [42] Facile preparation of g-C3N4/Bi2WO6 hybrid photocatalyst with enhanced visible light photoreduction of Cr(VI)
    Xue-Yan Song
    Quan-Liang Chen
    Journal of Nanoparticle Research, 2019, 21
  • [43] Facile preparation of g-C3N4/Bi2WO6 hybrid photocatalyst with enhanced visible light photoreduction of Cr(VI)
    Song, Xue-Yan
    Chen, Quan-Liang
    JOURNAL OF NANOPARTICLE RESEARCH, 2019, 21 (08)
  • [44] Analysis of Tetracycline Modification Based on g-C3N4 Photocatalytic Degradation
    Li, Jinghang
    Shi, Qi
    Song, Chaoyu
    Shi, Chenxi
    Lv, Yuguang
    INORGANICS, 2025, 13 (03)
  • [45] Construction of S-scheme Bi2WO6/g-C3N4 heterostructure nanosheets with enhanced visible-light photocatalytic degradation for ammonium dinitramide
    Lian, Xiaoyan
    Xue, Wenhua
    Dong, Shuai
    Liu, Enzhou
    Li, Hui
    Xu, Kangzhen
    JOURNAL OF HAZARDOUS MATERIALS, 2021, 412
  • [46] In Situ Construction of WO3/Bi2WO6 Heterogeneous Materials for Advanced Photocatalytic Activity in Degradation of Tetracycline
    Wang, Xinjun
    Li, Bian
    Xu, Fang
    Wu, Dapeng
    Jiang, Yuqin
    Li, Wei
    Jiang, Kai
    CRYSTAL RESEARCH AND TECHNOLOGY, 2022, 57 (10)
  • [47] Nanoengineering construction of g-C3N4/Bi2WO6 S-scheme heterojunctions for cooperative enhanced photocatalytic CO2 reduction and pollutant degradation
    Zhang, Bingke
    Liu, Yaxin
    Wang, Dongbo
    He, Wen
    Fang, Xuan
    Zhao, Chenchen
    Pan, Jingwen
    Liu, Donghao
    Liu, Sihang
    Chen, Tianyuan
    Zhao, Liancheng
    Wang, Jinzhong
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 354
  • [48] g-C3N4/Bi/Bi2WO6光催化材料的协同改性研究
    黄曦瑶
    李明春
    郭银彤
    无机盐工业, 2022, 54 (12) : 133 - 138
  • [49] Enhanced Photocatalytic Performance of Amorphous Carbon/g-C3N4/Bi2WO6 Ternary Z-Scheme Heterojunction Photocatalyst
    Zheng J.
    Shang X.
    Liu G.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2024, 52 (01): : 122 - 132
  • [50] Hydrothermal synthesis of Bi2WO6 with a new tungsten source and enhanced photocatalytic activity of Bi2WO6 hybridized with C3N4
    Yan, Peipei
    Li, Di
    Ma, Xinguo
    Xue, Juanqin
    Zhang, Yujie
    Liu, Manbo
    PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 2018, 17 (08) : 1084 - 1090