Thermal broadening of the J-band in disordered linear molecular aggregates:: A theoretical study -: art. no. 144507

被引:39
作者
Heijs, DJ
Malyshev, VA
Knoester, J
机构
[1] Univ Groningen, Inst Theoret Phys, NL-9747 AG Groningen, Netherlands
[2] Univ Groningen, Ctr Mat Sci, NL-9747 AG Groningen, Netherlands
关键词
D O I
10.1063/1.2052591
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We theoretically study the temperature dependence of the J-band width in disordered linear molecular aggregates, caused by dephasing of the exciton states due to scattering on vibrations of the host matrix. In particular, we consider inelastic one- and two-phonon scatterings between different exciton states (energy-relaxation-induced dephasing), as well as the elastic two-phonon scattering of the excitons (pure dephasing). The exciton states follow from numerical diagonalization of a Frenkel exciton Hamiltonian with diagonal disorder; the scattering rates between them are obtained using the Fermi golden rule. A Debye-type model for the one- and two-phonon spectral densities is used in the calculations. We find that, owing to the disorder, the dephasing rates of the individual exciton states are distributed over a wide range of values. We also demonstrate that the dominant channel of two-phonon scattering is not the elastic one, as is often tacitly assumed, but rather comes from a similar two-phonon inelastic scattering process. In order to study the temperature dependence of the J-band width, we simulate the absorption spectrum, accounting for the dephasing-induced broadening of the exciton states. We find a power-law (T-p) temperature scaling of the effective homogeneous width, with an exponent p that depends on the shape of the spectral density of the host vibrations. In particular, for a Debye model of vibrations, we find p approximate to 4, which is in good agreement with the experimental data on J aggregates of pseudoisocyanine.
引用
收藏
页数:12
相关论文
共 48 条