Zero curvature representation, bi-Hamiltonian structure, and an integrable hierarchy for the Zakharov-Ito system

被引:4
|
作者
Baxter, Mathew [1 ]
Choudhury, S. Roy [2 ]
Van Gorder, Robert A. [3 ]
机构
[1] Florida Gulf Coast Univ, Dept Math, Ft Myers, FL 33965 USA
[2] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
[3] Univ Oxford, Math Inst, Oxford Ctr Ind & Appl Math, Oxford OX2 6GG, England
基金
英国工程与自然科学研究理事会;
关键词
EQUATIONS;
D O I
10.1063/1.4922361
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the present paper, we present an integrable hierarchy for the Zakharov-Ito system. We first construct the Lenard recursion sequence and zero curvature representation for the Zakharov-Ito system, following Cao's method as significantly generalized by other authors. We then construct the bi-Hamiltonian structures employing variational trace identities but woven together with the Lenard recursion sequences. From this, we are in a position to construct an integrable hierarchy of equations from the Zakharov-Ito system, and we obtain the recursion operator and Poisson brackets for constructing this hierarchy. Finally, we demonstrate that the obtained hierarchy is indeed Liouville integrable. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:16
相关论文
共 13 条