Cross-ratio identities and higher-order poles of CHY-integrand

被引:46
作者
Cardona, Carlos [1 ]
Feng, Bo [2 ,3 ]
Gomez, Humberto [4 ,5 ]
Huang, Rijun [2 ]
机构
[1] Natl Tsing Hua Univ, Natl Ctr Theoret Sci, Div Phys, 101,Sect 2,Kuang Fu Rd, Hsinchu 30013, Taiwan
[2] Zhejiang Univ, Dept Phys, Zhejiang Inst Modern Phys, 38 Zheda Rd, Hangzhou 310027, Zhejiang, Peoples R China
[3] Zhejiang Univ, Ctr Math Sci, 38 Zheda Rd, Hangzhou 310027, Zhejiang, Peoples R China
[4] Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970 Sao Paulo, SP, Brazil
[5] Univ Santiago Cali, Fac Ciencias Basicas, Calle 5 62-00 Barrio Pampalinda, Cali, Valle, Colombia
基金
中国国家自然科学基金;
关键词
Scattering Amplitudes; Differential and Algebraic Geometry;
D O I
10.1007/JHEP09(2016)133
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The evaluation of generic Cachazo-He-Yuan(CHY)-integrands is a big challenge and efficient computational methods are in demand for practical evaluation. In this paper, we propose a systematic decomposition algorithm by using cross-ratio identities, which provides an analytic and easy to implement method for the evaluation of any CHY-integrand. This algorithm aims to decompose a given CHY-integrand containing higher-order poles as a linear combination of CHY-integrands with only simple poles in a finite number of steps, which ultimately can be trivially evaluated by integration rules of simple poles. To make the method even more efficient for CHY-integrands with large number of particles and complicated higher-order pole structures, we combine the A-algorithm and the cross-ratio identities, and as a by-product it provides us a way to deal with CHY-integrands where the A-algorithm was not applicable in its original formulation.
引用
收藏
页数:36
相关论文
共 30 条
[1]  
Baadsgaard C., 2015, THESIS
[2]   Integration rules for loop scattering equations [J].
Baadsgaard, Christian ;
Bjerrum-Bohr, N. E. J. ;
Bourjaily, Jacob L. ;
Damgaard, Poul H. ;
Feng, Bo .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (11) :1-20
[3]   Scattering equations and Feynman diagrams [J].
Baadsgaard, Christian ;
Bjerrum-Bohr, N. E. J. ;
Bourjaily, Jacob L. ;
Damgaard, Poul H. .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (09)
[4]  
Bjerrum-Bohr N. E. J., ARXIV160506501
[5]   The polynomial form of the scattering equations is an H-basis [J].
Bosma, Jorrit ;
Sogaard, Mads ;
Zhang, Yang .
PHYSICAL REVIEW D, 2016, 94 (04)
[6]  
Cachazo F, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP04(2016)108
[7]   Scattering equations and matrices: from Einstein to Yang-Mills, DBI and NLSM [J].
Cachazo, Freddy ;
He, Song ;
Yuan, Ellis Ye .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (07)
[8]   Einstein-Yang-Mills scattering amplitudes from scattering equations [J].
Cachazo, Freddy ;
He, Song ;
Yuan, Ellis Ye .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (01)
[9]   Scattering equations and Kawai-Lewellen-Tye orthogonality [J].
Cachazo, Freddy ;
He, Song ;
Yuan, Ellis Ye .
PHYSICAL REVIEW D, 2014, 90 (06)
[10]   Scattering of massless particles: scalars, gluons and gravitons [J].
Cachazo, Freddy ;
He, Song ;
Yuan, Ellis Ye .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (07)