Load forecasting using artificial neural networksand support vector regression

被引:0
作者
De Rocco, Silvio Michel [1 ,3 ,4 ]
Aoki, Alexandre Rasi [2 ,4 ]
Lamar, Marcus Vinicius [3 ]
机构
[1] Univ Fed Parana, Dept Elect Engn, UFPR Polytech Ctr, POB 19011, BR-80060000 Curitiba, Parana, Brazil
[2] LACTEC, Inst Technol Dev, UFPR Polytech Ctr, BR-81531980 Curitiba, Brazil
[3] Parana Energy Co, BR-81200240 Curitiba, Parana, Brazil
[4] Brasilia Fed Univ, Dept Comp Sci, BR-70919970 Curitiba, Parana, Brazil
来源
PROCEEDINGS OF THE 7TH WSES INTERNATIONAL CONFERENCE ON POWER SYSTEMS: NEW ADVANCES IN POWER SYSTEMS | 2007年
关键词
load forecasting; artificial neural networks; support vector regression;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes a short term load forecasting system using two different techniques of Artificial Intelligence: Recurrent Artificial Neural Networks and Support Vector Regression. A brief analysis of the load over the distribution systems connection points in Brazilian Parana States is also done.
引用
收藏
页码:36 / +
页数:2
相关论文
共 6 条
[1]  
[Anonymous], 2001, NEURAL NETWORKS COMP
[2]   Load forecasting using support vector machines: A study on EUNITE competition 2001 [J].
Chen, BJ ;
Chang, MW ;
Lin, CJ .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2004, 19 (04) :1821-1830
[3]   FINDING STRUCTURE IN TIME [J].
ELMAN, JL .
COGNITIVE SCIENCE, 1990, 14 (02) :179-211
[4]   ON THE COMPUTATIONAL POWER OF ELMAN-STYLE RECURRENT NETWORKS [J].
KREMER, SC .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1995, 6 (04) :1000-1004
[5]   FUZZY-LOGIC IN CONTROL-SYSTEMS - FUZZY-LOGIC CONTROLLER .1. [J].
LEE, CC .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1990, 20 (02) :404-418
[6]  
Smola A., 1998, NCTR98030 ROYAL HOLL