Van der Waals Force-Assisted Heat-Transfer Engineering for Overcoming Limited Efficiency of Flexible Perovskite Solar Cells

被引:58
作者
Gong, Oh Yeong [1 ]
Han, Gill Sang [1 ]
Lee, SangMyeong [1 ]
Seo, Min Kyeong [1 ]
Sohn, ChangHwun [1 ]
Yoon, Geon Woo [1 ]
Jang, Jihun [2 ]
Lee, Jae Myeong [1 ]
Choi, Jin Hyuk [1 ]
Lee, Do-Kyoung [3 ]
Kang, Seok Beom [4 ]
Choi, Mansoo [5 ]
Park, Nam-Gyu [3 ,6 ]
Kim, Dong Hoe [4 ]
Jung, Hyun Suk [1 ,6 ]
机构
[1] Sungkyunkwan Univ SKKU, Sch Adv Mat Sci & Engn, Suwon 16419, South Korea
[2] Frontier Energy Solut Co Ltd, Ulsan 44919, South Korea
[3] Sungkyunkwan Univ, Sch Chem Engn, Suwon 16419, South Korea
[4] Korea Univ, Dept Mat Sci & Engn, Seoul 02841, South Korea
[5] Seoul Natl Univ, Global Frontier Ctr Multiscale Energy Syst, Seoul 08826, South Korea
[6] Sungkyunkwan Univ, SKKU Inst Energy Sci & Technol SIEST, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
CRYSTAL-GROWTH; STABILITY; FILMS; TEMPERATURE; INTERLAYERS;
D O I
10.1021/acsenergylett.2c01391
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Flexible perovskite solar cells (f-PSCs) have attracted increasing attention for a variety of applications because of their desirable form factor and improved durability. However, the f-PSC fabrication process has not been optimized, resulting in their uneven efficiency. We report a van der Waals stacking (vdWS) process that yields uniform and highly crystalline perovskite films on flexible substrates by uniform heat transfer during the perovskite annealing process. In addition, the surface and grain boundary defects on the perovskite film were effectively minimized with the vacuum-assisted passivation post-treatment; accordingly, the environmental and mechanical stabilities of f-PSCs were enhanced. Also, the best f-PSC with an active area of 0.14 cm(2) achieved power conversion efficiencies (PCEs) of 41.23% and 22.54% under 1000 1x and 1 sun illuminations, respectively. Furthermore, the vdWS process showed scalable uniformity through flexible perovskite solar minimodules with a certified PCE of 18.35% in an active area of 48.90 cm(2).
引用
收藏
页码:2893 / 2903
页数:11
相关论文
共 64 条
[31]   The Interplay between Trap Density and Hysteresis in Planar Heterojunction Perovskite Solar Cells [J].
Lee, Jin-Wook ;
Kim, Seul-Gi ;
Bae, Sang-Hoon ;
Lee, Do-Kyoung ;
Lin, Oliver ;
Yang, Yang ;
Park, Nam-Gyu .
NANO LETTERS, 2017, 17 (07) :4270-4276
[32]   Material innovation and mechanics design for substrates and encapsulation of flexible electronics: a review [J].
Li, Haibo ;
Ma, Yinji ;
Huang, Yonggang .
MATERIALS HORIZONS, 2021, 8 (02) :383-400
[33]   Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility [J].
Li, Nengxu ;
Niu, Xiuxiu ;
Li, Liang ;
Wang, Hao ;
Huang, Zijian ;
Zhang, Yu ;
Chen, Yihua ;
Zhang, Xiao ;
Zhu, Cheng ;
Zai, Huachao ;
Bai, Yang ;
Ma, Sai ;
Liu, Huifen ;
Liu, Xixia ;
Guo, Zhenyu ;
Liu, Guilin ;
Fan, Rundong ;
Chen, Hong ;
Wang, Jianpu ;
Lun, Yingzhuo ;
Wang, Xueyun ;
Hong, Jiawang ;
Xie, Haipeng ;
Jakob, Devon S. ;
Xu, Xiaoji G. ;
Chen, Qi ;
Zhou, Huanping .
SCIENCE, 2021, 373 (6554) :561-+
[34]   Boosting the Power Conversion Efficiency of Perovskite Solar Cells Using Self-Organized Polymeric Hole Extraction Layers with High Work Function [J].
Lim, Kyung-Geun ;
Kim, Hak-Beom ;
Jeong, Jaeki ;
Kim, Hobeom ;
Kim, Jin Young ;
Lee, Tae-Woo .
ADVANCED MATERIALS, 2014, 26 (37) :6461-6466
[35]   Understanding of perovskite crystal growth and film formation in scalable deposition processes [J].
Liu, Chang ;
Cheng, Yi-Bing ;
Ge, Ziyi .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (06) :1653-1687
[36]   Effective Passivation with Size-Matched Alkyldiammonium Iodide for High-Performance Inverted Perovskite Solar Cells [J].
Liu, Sanwan ;
Guan, Xinyu ;
Xiao, Wenshan ;
Chen, Rui ;
Zhou, Jing ;
Ren, Fumeng ;
Wang, Jianan ;
Chen, Weitao ;
Li, Sibo ;
Qiu, Longbin ;
Zhao, Yan ;
Liu, Zonghao ;
Chen, Wei .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (38)
[37]   Creating a Dual-Functional 2D Perovskite Layer at the Interface to Enhance the Performance of Flexible Perovskite Solar Cells [J].
Long, Caoyu ;
Huang, Keqing ;
Chang, Jianhui ;
Zuo, Chuantian ;
Gao, Yuanji ;
Luo, Xin ;
Liu, Biao ;
Xie, Haipeng ;
Chen, Zhihui ;
He, Jun ;
Huang, Han ;
Gao, Yongli ;
Ding, Liming ;
Yang, Junliang .
SMALL, 2021, 17 (32)
[38]   Bio-inspired vertebral design for scalable and flexible perovskite solar cells [J].
Meng, Xiangchuan ;
Cai, Zheren ;
Zhang, Yanyan ;
Hu, Xiaotian ;
Xing, Zhi ;
Huang, Zengqi ;
Huang, Zhandong ;
Cui, Yongjie ;
Hu, Ting ;
Su, Meng ;
Liao, Xunfan ;
Zhang, Lin ;
Wang, Fuyi ;
Song, Yanlin ;
Chen, Yiwang .
NATURE COMMUNICATIONS, 2020, 11 (01)
[39]   Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes [J].
Min, Hanul ;
Lee, Do Yoon ;
Kim, Junu ;
Kim, Gwisu ;
Lee, Kyoung Su ;
Kim, Jongbeom ;
Paik, Min Jae ;
Kim, Young Ki ;
Kim, Kwang S. ;
Kim, Min Gyu ;
Shin, Tae Joo ;
Seok, Sang Il .
NATURE, 2021, 598 (7881) :444-+
[40]   Halide perovskite-based indoor photovoltaics: recent development and challenges [J].
Muhammad, Bening Tirta ;
Kar, Shaoni ;
Stephen, Meera ;
Leong, Wei Lin .
MATERIALS TODAY ENERGY, 2022, 23