Intrinsic hardness of constitutive phases in WC-Co composites: Nanoindentation testing, statistical analysis, WC crystal orientation effects and flow stress for the constrained metallic binder

被引:67
作者
Roa, J. J. [1 ,2 ]
Jimenez-Pique, E. [1 ,2 ]
Verge, C. [1 ]
Tarrago, J. M. [1 ,2 ]
Mateo, A. [1 ]
Fair, J. [3 ]
Llanes, L. [1 ,2 ]
机构
[1] Univ Politecn Cataluna, CIEFMA Dept Ciencia Mat & Ingn Met, ETSEIB, E-08028 Barcelona, Spain
[2] Univ Politecn Cataluna, CRnE, E-08028 Barcelona, Spain
[3] Sandvik Hyper, Coventry CV4 0XG, W Midlands, England
关键词
Nanoindentation; Statistical indentation; WC-Co; Cemented carbide; Cermets; INSTRUMENTED INDENTATION; FRACTURE-TOUGHNESS; ELASTIC-MODULUS; DEFORMATION; SIZE; MICROSTRUCTURE; MODEL; WC/CO; SLIP;
D O I
10.1016/j.jeurceramsoc.2015.04.021
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The intrinsic hardness of the constitutive phases in WC-Co composites is investigated by combining experimental and statistical analysis nanoindentation techniques. It is done on the basis of considering the cemented carbide material as effectively heterogeneous at the microstructure scale, i.e. consisting of three phases defined by either different chemical nature (carbides and binder) or distinct carbide crystal orientation (i.e. with surface normal perpendicular to either basal or prismatic planes). As main outcome, experimentally measured and statistically significant intrinsic hardness values for the defined phases (WC and constrained metallic binder) are analyzed and determined. Besides the evidence of crystal anisotropy for the WC phase, they permit to identify and account the expected strengthening of the plastic-constrained metallic binder, a critical input parameter for hardness and toughness modelling as well as for microstructural design optimization of ceramic composites reinforced by ductile metallic ligaments. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3419 / 3425
页数:7
相关论文
共 41 条
[1]   The Hardness and Strength Properties of WC-Co Composites [J].
Armstrong, Ronald W. .
MATERIALS, 2011, 4 (07) :1287-1308
[2]   Nanoindentation of Al2O3/Al2TiO5 composites: Small-scale mechanical properties of Al2TiO5 as reinforcement phase [J].
Botero, C. A. ;
Jimenez-Pique, E. ;
Baudin, C. ;
Salan, N. ;
Llanes, L. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2012, 32 (14) :3723-3731
[3]   The duality in mechanical property extractions from Vickers and Berkovich instrumented indentation experiments [J].
Casals, O ;
Alcalá, J .
ACTA MATERIALIA, 2005, 53 (13) :3545-3561
[4]   Analytical modeling to calculate the hardness of ultra-fine WC-Co cemented carbides [J].
Cha, Seung I. ;
Lee, Kyong H. ;
Ryu, Ho J. ;
Hong, Soon H. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 489 (1-2) :234-244
[5]   Grid indentation analysis of composite microstructure and mechanics: Principles and validation [J].
Constantinides, G. ;
Chandran, K. S. Ravi ;
Ulm, F-J. ;
Van Vliet, K. J. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 430 (1-2) :189-202
[6]  
Constantinides G, 2003, MATER STRUCT, V36, P191, DOI 10.1617/14020
[7]   The nanogranular nature of C-S-H [J].
Constantinides, Georgios ;
Ulm, Franz-Josef .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2007, 55 (01) :64-90
[8]  
Coureaux D., 2012, Ph.D. Thesis
[9]   Orientation-dependent hardness and nanoindentation-induced deformation mechanisms of WC crystals [J].
Csanadi, Tamas ;
Bl'anda, Marek ;
Chinh, Nguyen Q. ;
Hvizdos, Pavol ;
Dusza, Jan .
ACTA MATERIALIA, 2015, 83 :397-407
[10]  
Cuadrado N., 2011, P EUR POWD MET C EXH, V1, P215