Deep Learning-based Recurrence Prediction in Patients with Non-muscle-invasive Bladder Cancer

被引:37
作者
Lucas, Marit [1 ]
Jansen, Ilaria [1 ,2 ]
van Leeuwen, Ton G. [1 ]
Oddens, Jorg R. [2 ]
de Bruin, Daniel M. [1 ,2 ]
Marquering, Henk A. [3 ,4 ,5 ]
机构
[1] Univ Amsterdam, Canc Ctr Amsterdam, Dept Biomed Engn & Phys, Amsterdam UMC, Meibergdreef 9, NL-1105 AZ Amsterdam, Netherlands
[2] Univ Amsterdam, Dept Urol, Amsterdam UMC, Amsterdam, Netherlands
[3] Univ Amsterdam, Dept Biomed Engn & Phys, Amsterdam UMC, Amsterdam Neurosci, Amsterdam, Netherlands
[4] Univ Amsterdam, Dept Biomed Engn & Phys, Amsterdam UMC, Amsterdam Cardiovasc Sci, Amsterdam, Netherlands
[5] Univ Amsterdam, Dept Radiol & Nucl Med, Amsterdam UMC, Amsterdam, Netherlands
关键词
Bladder cancer; Deep learning; Disease recurrence; Prediction; EORTC RISK TABLES; UROTHELIAL CARCINOMA; CELL-CARCINOMA; SYSTEM; MODEL;
D O I
10.1016/j.euf.2020.12.008
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Background: Non-muscle-invasive bladder cancer (NMIBC) is characterized by frequent recurrence of the disease, which is difficult to predict. Objective: To combine digital histopathology slides with clinical data to predict 1-and 5-yr recurrence-free survival of NMIBC patients using deep learning. Design, setting, and participants: Data of patients undergoing a transurethral resection of a bladder tumor between 2000 and 2018 at a Dutch academic medical center were selected. Corresponding histological slides were digitized. A three-step approach was used to predict 1-and 5-yr recurrence-free survival. First, a segmentation network was used to detect the urothelium on the digital histopathology slides. Second, a selection network was trained for the selection of patches associated with recurrence. Third, a classification network, combining the information of the selection network with clinical data, was trained to give the probability of 1-and 5-yr recurrence-free survival. Outcome measurements and statistical analysis: The accuracy of the deep learning-based model was compared with a multivariable logistic regression model using clinical data only. Results and limitations: In the 1-and 5-yr follow-up cohorts, 359 and 281 patients were included with recurrence rates of 27% and 63%, respectively. The areas under the curve (AUCs) of the model combining digital histopathology slide data with clinical data were 0.62 and 0.76 for 1-and 5-yr recurrence predictions, respectively, which were higher than those of the model using digital histopathology slide data only (AUCs of 0.56 and 0.72, respectively) and the multivariable logistic regression (AUCs of 0.58 and 0.57, respectively). Conclusions: In our population, the deep learning-based model combining digital histopathology slides and clinical data enhances the prediction of recurrence (within 5 yr) compared with models using clinical data or image data only. Patient summary: By combining histopathology images and patient record data using deep learning, the prediction of recurrence in bladder cancer patients is enhanced. (c) 2020 European Association of Urology. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:165 / 172
页数:8
相关论文
共 23 条
[1]   EAU Guidelines on Non-Muscle-invasive Urothelial Carcinoma of the Bladder: Update 2016 [J].
Babjuk, Marko ;
Boehle, Andreas ;
Burger, Maximilian ;
Capoun, Otakar ;
Cohen, Daniel ;
Comperat, Eva M. ;
Hernandez, Virginia ;
Kaasinen, Eero ;
Palou, Joan ;
Roupret, Morgan ;
van Rhijn, Bas W. G. ;
Shariat, Shahrokh F. ;
Soukup, Viktor ;
Sylvester, Richard J. ;
Zigeuner, Richard .
EUROPEAN UROLOGY, 2017, 71 (03) :447-461
[2]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[3]   Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study [J].
Bulten, Wouter ;
Pinckaers, Hans ;
van Boven, Hester ;
Vink, Robert ;
de Bel, Thomas ;
van Ginneken, Bram ;
van der Laak, Jeroen ;
Hulsbergen-van de Kaa, Christina ;
Litjens, Geert .
LANCET ONCOLOGY, 2020, 21 (02) :233-241
[4]   Deep learning based tissue analysis predicts outcome in colorectal cancer [J].
Bychkov, Dmitrii ;
Linder, Nina ;
Turkki, Riku ;
Nordling, Stig ;
Kovanen, Panu E. ;
Verrill, Clare ;
Walliander, Margarita ;
Lundin, Mikael ;
Haglund, Caj ;
Lundin, Johan .
SCIENTIFIC REPORTS, 2018, 8
[5]   Neuro-fuzzy modeling: An accurate and interpretable method for predicting bladder cancer progression [J].
Catto, JWF ;
Abbod, MF ;
Linkens, DA ;
Hamdy, FC .
JOURNAL OF UROLOGY, 2006, 175 (02) :474-479
[6]  
Comperat E, 2018, EAU GUIDELINES NONMU, P11
[7]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[8]   Predicting Nonmuscle Invasive Bladder Cancer Recurrence and Progression in Patients Treated With Bacillus Calmette-Guerin: The CUETO Scoring Model [J].
Fernandez-Gomez, Jesus ;
Madero, Rosario ;
Solsona, Eduardo ;
Unda, Miguel ;
Martinez-Pineiro, Luis ;
Gonzalez, Marcelino ;
Portillo, Jose ;
Ojea, Antonio ;
Pertusa, Carlos ;
Rodriguez-Molina, Jesus ;
Emilio Camacho, Jose ;
Rabadan, Mariano ;
Astobieta, Ander ;
Montesinos, Manuel ;
Isorna, Santiago ;
Muntanola, Pedro ;
Gimeno, Anabel ;
Blas, Miguel ;
Antonio Martinez-Pineiro, Jose .
JOURNAL OF UROLOGY, 2009, 182 (05) :2195-2203
[9]   Predicting disease outcome of non-invasive transitional cell carcinoma of the urinary bladder using an artificial neural network model: Results of patient follow-up for 15 years or longer [J].
Fujikawa, K ;
Matsui, Y ;
Kobayashi, T ;
Miura, K ;
Oka, H ;
Fukuzawa, S ;
Sasaki, M ;
Takeuchi, H ;
Okabe, T .
INTERNATIONAL JOURNAL OF UROLOGY, 2003, 10 (03) :149-152
[10]   Automated Detection and Grading of Non-Muscle-Invasive Urothelial Cell Carcinoma of the Bladder [J].
Jansen, Ilaria ;
Lucas, Marit ;
Bosschieter, Judith ;
de Boer, Onno J. ;
Meijer, Sybren L. ;
van Leeuwen, Ton G. ;
Marquering, Henk A. ;
Nieuwenhuijzen, Jakko A. ;
de Bruin, Daniel M. ;
Savci-Heijink, C. Dilara .
AMERICAN JOURNAL OF PATHOLOGY, 2020, 190 (07) :1483-1490