An asymptotic expansion of the double gamma function

被引:42
作者
Ferreira, C [1 ]
López, JL
机构
[1] Univ Zaragoza, Fac Ciencias, Dept Math Aplicada, E-50013 Zaragoza, Spain
[2] Univ Publ Navarra, Dept Matemat & Informat, Pamplona 31006, Spain
关键词
Barnes double gamma function; asymptotic expansions;
D O I
10.1006/jath.2001.3578
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Barnes double gamma function G(z) is considered for large argument z. A new integral representation is obtained for log G(z). An asymptotic expansion in decreasing powers of : and uniformly valid for \ Arg z \ < pi is derived from this integral. The expansion is accompanied by an error bound at any order of the approximation. Numerical experiments show that this bound is very accurate for real z. The accuracy of the error bound decreases for increasing Arg z. (C) 2001 Academic Press.
引用
收藏
页码:298 / 314
页数:17
相关论文
共 50 条
[31]   A complete asymptotic expansion for a sequence of certain sums [J].
Abel, Ulrich .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (08) :4302-4305
[32]   Asymptotic expansion of the difference of two Mahler measures [J].
Condon, John D. .
JOURNAL OF NUMBER THEORY, 2012, 132 (09) :1962-1983
[33]   ON ONE ASYMPTOTIC EXPANSION IN THE CENTRAL LIMIT THEOREM [J].
Senatov, V. V. .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2012, 56 (02) :337-U1601
[34]   Complete Asymptotic Expansion for Generalized Favard Operators [J].
Ulrich Abel ;
Paul L. Butzer .
Constructive Approximation, 2012, 35 :73-88
[35]   On the reversion of an asymptotic expansion and the zeros of the airy functions [J].
Fabijonas, BR ;
Olver, FWJ .
SIAM REVIEW, 1999, 41 (04) :762-773
[36]   The asymptotic expansion for n! and the Lagrange inversion formula [J].
Stella Brassesco ;
Miguel A. Méndez .
The Ramanujan Journal, 2011, 24 :219-234
[37]   Complete Asymptotic Expansion for Generalized Favard Operators [J].
Abel, Ulrich ;
Butzer, Paul L. .
CONSTRUCTIVE APPROXIMATION, 2012, 35 (01) :73-88
[38]   An asymptotic expansion for the distribution of the supremum of a random walk [J].
Sgibnev, MS .
STUDIA MATHEMATICA, 2000, 140 (01) :41-55
[39]   Asymptotic expansion for Szasz-Mirakyan operators [J].
Abel, Ulrich ;
Ivan, Mircea ;
Zeng, Xiao-Ming .
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2007, 936 :779-+
[40]   Asymptotic expansion of stochastic oscillatory integrals with rotation invariance [J].
Ueki, N .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1999, 35 (04) :417-457