A class of p1(x, .) & p2(x, .)-fractional Kirchhoff-type problem with variable s(x, .)-order and without the Ambrosetti-Rabinowitz condition in Double-struck capital RN

被引:0
|
作者
Bu, Weichun [2 ,3 ]
An, Tianqing [2 ]
Zuo, Jiabin [1 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[2] Hohai Univ, Coll Sci, Nanjing 210098, Peoples R China
[3] Zhongyuan Univ Technol, Coll Sci, Zhengzhou 450007, Peoples R China
来源
OPEN MATHEMATICS | 2022年 / 20卷 / 01期
关键词
Kirchhoff-type equation; fractional p(1)(x.) & p(2)(x.)-Laplacian; variable s(x.)-order; abstract critical point theory; Q-LAPLACIAN PROBLEM; NONTRIVIAL SOLUTION; SOBOLEV SPACES; EXISTENCE; MULTIPLICITY; EQUATIONS; P(X)-LAPLACIAN; ORDER; (P;
D O I
10.1515/math-2022-0028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study a class of Kirchhoff-type equation driven by the variable s(x, .)-order fractional p(1)(x, .) & p(2)(x, .)-Laplacian. With the help of three different critical point theories, we obtain the existence and multiplicity of solutions in an appropriate space of functions. The main difficulties and innovations are the Kirchhoff functions with double Laplace operators in the whole space Double-struck capital R-N. Moreover, the approach is variational, but we do not impose any Ambrosetti-Rabinowitz condition for the nonlinear term.
引用
收藏
页码:267 / 290
页数:24
相关论文
共 12 条