Compactness of Kahler-Ricci solitons on Fano manifolds

被引:0
作者
Guo, Bin [1 ,2 ]
Phong, Duong H. [1 ]
Song, Jian [3 ]
Sturm, Jacob [2 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
[2] Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USA
[3] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
Kahler-Ricci solitons; Fano manifolds; CURVATURE; FLOW;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this short paper, we improve the result of Phong- moving the assumption on the uniform bound of the Futaki invariant. Let kappa R(n) be the space of Kahler-Ricci solitons on ndimensional Fano manifolds. We show that after passing to a subsequence, any sequence in kappa R(n) converge in the Gromov-Hausdorff topology to a Kahler-Ricci soliton on an n-dimensional Q-Fano variety with log terminal singularities.
引用
收藏
页码:305 / 316
页数:12
相关论文
共 23 条
  • [1] [Anonymous], ARXIV13044490
  • [2] Birkar C., ARXIV160905543V1
  • [3] Geometry of Ricci solitons
    Cao, Huai-Dong
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2006, 27 (02) : 121 - 142
  • [4] Cao HD, 2010, J DIFFER GEOM, V85, P175
  • [5] On the singularities of spaces with bounded Ricci curvature
    Cheeger, J
    Colding, TH
    Tian, G
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (05) : 873 - 914
  • [6] [Чельцов Иван Анатольевич Cheltsov Ivan Anatol'evich], 2008, [Успехи математических наук, Russian Mathematical Surveys, Uspekhi matematicheskikh nauk], V63, P73
  • [7] Gromov-Hausdorff limits of Kahler manifolds and algebraic geometry
    Donaldson, Simon
    Sun, Song
    [J]. ACTA MATHEMATICA, 2014, 213 (01) : 63 - 106
  • [8] Hamilton R S., 1988, AM MATH SOC, V71, P237, DOI DOI 10.1090/CONM/071/954419
  • [9] The moduli space of Fano manifolds with Kahler-Ricci solitons
    Inoue, Eiji
    [J]. ADVANCES IN MATHEMATICS, 2019, 357
  • [10] Odaka Y, ARXIV12114833