Analysing surface plasmon resonance phase sensor based on Mach-Zehnder interferometer technique using glycerin

被引:19
|
作者
Kashif, Muhammad [1 ]
Bakar, A. Ashrif A. [1 ]
Hashim, Fazida Hanim [1 ]
机构
[1] Univ Kebangsaan Malaysia, Dept Elect Elect & Syst Engn, Fac Engn & Built Environm, Ukm Bangi 43600, Selangor, Malaysia
关键词
Surface Plasmon Resonance; SPR phase; Mach-Zehnder interferometer; Glycerin; Sensitivity; Drift; BIO;
D O I
10.1016/j.optcom.2016.06.033
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Surface Plasmon Resonance (SPR) based on Mach-Zehnder interferometer (MZI) is a very accurate tool for the detection and analysis of molecular interactions. The performance of the proposed SPR phase sensor is dependent upon multiple performance parameters that include sensitivity, repeatability, drift and the induction speed of fluid into the flow cell. The SPR Mach-Zehnder interferometer is tested for different glycerin-water concentrations to check its performance based on the different parameters. This paper highlights the enhancement of the performance of SPR phase technique based on MZI that is influenced by different parameters, measured using glycerin solutions. These four performance parameters can affect the performance of SPR based on MZI and have a particular impact on the sensor output. It also provides us information about suitable working conditions for the SPR Mach-Zehnder interferometer sensor. The experiment data shows that the sensor's sensitivity is high for small concentrations of glycerin water mixtures. Also, any change in drift as well as in induction speed of fluid can affect the performance of SPR Mach-Zehnder interferometer. The sensitivity of SPR phase sensor is high as it can measure glycerin concentration as low as 0.05%. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:419 / 424
页数:6
相关论文
共 50 条
  • [1] Split Mach-Zehnder interferometer for surface plasmon resonance based phase modulation
    Banerjee, Jayeta
    Bera, Mahua
    Ray, Mina
    OPTICS COMMUNICATIONS, 2017, 403 : 55 - 61
  • [2] Phase difference surface plasmon resonance sensor based on Mach-Zehnder configuration
    Wang, Yijia
    Zhang, Chonglei
    Wang, Rong
    Zhu, Siwei
    Yuan, Xiaocong
    Zhongguo Jiguang/Chinese Journal of Lasers, 2013, 40 (07):
  • [3] Torsion sensor using a Mach-Zehnder interferometer
    Toral-Acosta, D.
    Sierra Hernandez, J. M.
    Jauregui-Vazquez, D.
    Castillo-Guzman, A.
    Rojas-Laguna, R.
    Estudillo-Ayala, J. M.
    Selvas-Aguilar, R.
    PHOTONIC FIBER AND CRYSTAL DEVICES: ADVANCES IN MATERIALS AND INNOVATIONS IN DEVICE APPLICATIONS VII, 2013, 8847
  • [4] Surface plasmon polariton Mach-Zehnder interferometer and oscillation fringes
    Drezet, Aurelian
    Hohenau, Andreas
    Stepanov, Andrey L.
    Ditlbacher, Harald
    Steinberger, Bernhard
    Aussenegg, Franz R.
    Leitner, Alfred
    Krenn, Joachim R.
    PLASMONICS, 2006, 1 (2-4) : 141 - 145
  • [5] A Mach-Zehnder Interferometer Refractive Index Sensor on a Spoof Surface Plasmon Polariton Waveguide
    Zhang, Yawei
    Liu, Yuzhu
    Xi, Haoyan
    Meng, Tianhua
    Zhao, Guozhong
    ELECTRONICS, 2022, 11 (23)
  • [6] A microwave permittivity sensor on a Mach-Zehnder Interferometer of: Spoof surface plasmon polariton waveguides
    Xiao, Hong
    Chen, Juan
    Yan, Sen
    SENSORS AND ACTUATORS A-PHYSICAL, 2024, 379
  • [7] Spatial accumulation of phase difference in spoof plasmon based Mach-Zehnder Interferometer
    Aghadjani, Mahdi
    Erementchouk, Mikhail
    Mazumder, Pinaki
    OPTICS COMMUNICATIONS, 2018, 410 : 248 - 253
  • [8] ALIGNMENT TECHNIQUE FOR MACH-ZEHNDER INTERFEROMETER USING A LASER
    CHEN, CS
    BIRD, JD
    JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1971, 4 (03): : 157 - &
  • [9] ALIGNMENT TECHNIQUE FOR MACH-ZEHNDER INTERFEROMETER
    PANARELLA, E
    JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1973, 6 (06): : 523 - 523
  • [10] Surface Plasmon Resonance Based Differential Phase Analysis Using Mach-Zehnder Interferometric Set-up
    Banerjee, Jayeta
    Bera, Mahua
    Ray, Mina
    ADVANCES IN OPTICAL SCIENCE AND ENGINEERING, 2017, 194 : 235 - 240