Antioxidant defense in the leaves of C3 and C4 plants under salinity stress

被引:158
作者
Stepien, P [1 ]
Klobus, G [1 ]
机构
[1] Univ Wroclaw, Inst Plant Biol, Dept Plant Physiol, PL-50328 Wroclaw, Poland
关键词
D O I
10.1111/j.1399-3054.2005.00534.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The effect of salt stress (50, 100 and 150 mM of NaCl) on the activity of superoxide dismutase (SOD, EC. 1.15.1.1), ascorbate peroxidase (APX, EC. 1.11.1.11), glutathione reductase (GR, EC. 1.6.4.2) enzymes and also on the rate of lipid peroxidation in terms of thiobarbituric acid-reactive substances (TBARS) content and photosynthetic capacity in two wheat (C3 plants) and two maize (C4 plants) varieties was studied. In the non-salined control plants, the antioxidant enzymes activities were significantly higher for maize than for wheat. Adding salt to the nutrient solution increased the level of antioxidants in leaves of both maize and wheat. The first substantial response to salinity was found for SOD on the 2nd day, whereas changes occurred for APX on the 4th day and for GR on the 4th/5th day of salt treatment. Although SOD activity increased considerably more in wheat (C3), it never reached as high levels as in maize (C4) grown in the same treatment combinations. The total increase in APX activity was similar for wheat and maize, whereas GR activity was higher in leaves of maize. Lipid peroxidation analyses showed an increase in TBARS contents in both plants' species grown under salinity that corresponded to the damage that occurred in secondary oxidative stress. However, as a result of advanced antioxidant defense in maize, the TBARS quantities did not elevate to as high level as in wheat. Chlorophyll fluorescence measurements revealed a considerable decrease in the efficiency of PS II and electron-transport chain (ETC). Assimilation rate of CO2 decreased in both plant groups; however, in C-4 maize, we observed a much better capacity to preserve the photosynthetic apparatus against overproduction of ROS. Results suggest that efficient antioxidant defense plays an important role in maize, the C-4 plant, resistance to environmental stresses like salinity or drought.
引用
收藏
页码:31 / 40
页数:10
相关论文
共 35 条
[1]   Production of reactive oxygen species during non-specific elicitation, non-host resistance and field resistance expression in cultured tobacco cells [J].
Able, AJ ;
Sutherland, MW ;
Guest, DI .
FUNCTIONAL PLANT BIOLOGY, 2003, 30 (01) :91-99
[2]   Superoxide dismutase and peroxidase activities in drought sensitive and resistant barley (Hordeum vulgare L.) varieties [J].
Acar, O ;
Türkan, I ;
Özdemir, F .
ACTA PHYSIOLOGIAE PLANTARUM, 2001, 23 (03) :351-356
[3]  
Alscher RG, 1997, PHYSIOL PLANTARUM, V100, P224, DOI 10.1034/j.1399-3054.1997.1000203.x
[4]  
Asada K., 1994, Causes of photooxidative stress and amelioration of defense systems in plants., P77
[5]   ASCORBATE PEROXIDASE - A HYDROGEN PEROXIDE-SCAVENGING ENZYME IN PLANTS [J].
ASADA, K .
PHYSIOLOGIA PLANTARUM, 1992, 85 (02) :235-241
[6]  
Asada K., 1987, Photoinhibition, P227
[7]   The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. [J].
Bor, M ;
Özdemir, F ;
Türkan, I .
PLANT SCIENCE, 2003, 164 (01) :77-84
[8]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[9]  
Bray E.A., 2000, Biochem. Mol. Biol. Plants (Buchanan, B. B., Gruissem, W. Jones, P1158, DOI DOI 10.12691/WJAR-2-2-2
[10]   Antioxidant responses of rice seedlings to salinity stress [J].
Dionisio-Sese, ML ;
Tobita, S .
PLANT SCIENCE, 1998, 135 (01) :1-9