On spectra of non-self-adjoint Sturm-Liouville operators

被引:14
作者
Albeverio, S. [1 ,2 ,3 ,4 ,5 ,6 ]
Hryniv, R. [7 ]
Mykytyuk, Ya. [7 ]
机构
[1] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
[2] SFB 611 & IZKS, Bonn, Germany
[3] BiBoS, Bielefeld, Germany
[4] CERFIM, Locarno, Switzerland
[5] Accademia Architettura, Mendrisio, Switzerland
[6] Inst Appl Problems Mech & Math, UA-79601 Lvov, Ukraine
[7] Lviv Natl Univ, UA-79602 Lvov, Ukraine
来源
SELECTA MATHEMATICA-NEW SERIES | 2008年 / 13卷 / 04期
关键词
inverse spectral problems; Sturm-Liouville; non-self-adjoint operators; singular potentials;
D O I
10.1007/s00029-008-0051-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The spectra of non-self-adjoint Sturm-Liouville operators with distributional potentials belonging to the space W(2)(-1)(0, 1) are studied. In particular, it is shown that any sequence of complex numbers obeying a specified asymptotics coincides with the spectrum of some non-self-adjoint Sturm-Liouville operator of the class under consideration. The inverse spectral problem of reconstructing an operator from two spectra or from one spectrum and suitably defined norming constants is also solved, and a complete description of the spectral data for the operators considered is given.
引用
收藏
页码:571 / 599
页数:29
相关论文
共 30 条
[1]   Inverse spectral problems for Sturm-Liouville operators in impedance form [J].
Albeverio, S ;
Hryniv, R ;
Mykytyuk, Y .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 222 (01) :143-177
[2]  
Albeverio S., 2005, AMS CHELSEA PUBL
[3]  
ALBEVERIO S, 2000, SINGULAR PERTURBATIO
[4]  
[Anonymous], AM MATH SOC TRANSL M
[5]   SOLUTION OF THE INVERSE SPECTRAL PROBLEM FOR AN IMPEDANCE WITH INTEGRABLE DERIVATIVE .2. [J].
COLEMAN, CF ;
MCLAUGHLIN, JR .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (02) :185-212
[6]  
COLEMAN CF, 1993, COMMUN PUR APPL MATH, V46, P145, DOI 10.1002/cpa.3160460203
[7]   THE INVERSE STURM-LIOUVILLE PROBLEM .3. [J].
DAHLBERG, BEJ ;
TRUBOWITZ, E .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (02) :255-267
[8]  
Falconer K.J., 1986, CAMBRIDGE TRACTS MAT, V85
[9]  
Gelfand I.M., 1951, IZV AKAD NAUK SSSR M, V2, P253
[10]  
Gohberg I., 1993, Operator Theory Advances and Applications, V63