On fractional impulsive equations of Sobolev type with nonlocal condition in Banach spaces

被引:58
作者
Balachandran, K. [2 ]
Kiruthika, S. [2 ]
Trujillo, J. J. [1 ]
机构
[1] Univ La Laguna, Dept Anal Matemat, Tenerife 38271, Spain
[2] Bharathiar Univ, Dept Math, Coimbatore 641046, Tamil Nadu, India
关键词
Fractional differential equations; Sobolev type; Non local condition; Impulsive conditions; Fixed point theorems; INTEGRODIFFERENTIAL EQUATIONS; DIFFERENTIAL-EQUATIONS; EXISTENCE; UNIQUENESS;
D O I
10.1016/j.camwa.2011.03.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The objective of this paper is to establish the existence of solutions of nonlinear impulsive fractional integrodifferential equations of Sobolev type with nonlocal condition. The results are obtained by using fractional calculus and fixed point techniques. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1157 / 1165
页数:9
相关论文
共 29 条
[1]   Existence of solutions of nonlinear integrodifferential equations of Sobolev type with nonlocal condition in Banach spaces [J].
Balachandran, K ;
Uchiyama, K .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2000, 110 (02) :225-232
[2]   Existence results for fractional impulsive integrodifferential equations in Banach spaces [J].
Balachandran, K. ;
Kiruthika, S. ;
Trujillo, J. J. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (04) :1970-1977
[3]  
Balachandran K, 2010, ELECTRON J QUAL THEO, P1
[4]  
Balachandran K, 1999, Commun Korean Math Soc, V14, P223
[5]   The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces [J].
Balachandran, Krishnan ;
Trujillo, Juan J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (12) :4587-4593
[6]  
Barenblatt G. I., 1960, Journal of Applied Mathematics and Mechanics, V24, P1286, DOI DOI 10.1016/0021-8928(60)90107-6
[7]   Existence of Periodic Solution for a Nonlinear Fractional Differential Equation [J].
Belmekki, Mohammed ;
Nieto, Juan J. ;
Rodriguez-Lopez, Rosana .
BOUNDARY VALUE PROBLEMS, 2009,
[8]  
Benchohra M, 2009, ELECTRON J DIFFER EQ
[9]   Fractional differential equations as alternative models to nonlinear differential equations [J].
Bonilla, B. ;
Rivero, M. ;
Rodriguez-Germa, L. ;
Trujillo, J. J. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (01) :79-88
[10]   SEMILINEAR SOBOLEV EVOLUTION EQUATION IN A BANACH-SPACE [J].
BRILL, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1977, 24 (03) :412-425