Chaos and information in two-dimensional turbulence

被引:9
作者
Clark, Daniel [1 ,2 ]
Tarra, Lukas [1 ,2 ]
Berera, Arjun [1 ,2 ]
机构
[1] Univ Edinburgh, Sch Phys & Astron, JCMB, Edinburgh EH9 3FD, Midlothian, Scotland
[2] Kings Bldg,Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Midlothian, Scotland
基金
英国工程与自然科学研究理事会; 英国科学技术设施理事会;
关键词
LYAPUNOV SPECTRUM; CHARACTERISTIC EXPONENTS; ENERGY-SPECTRUM; DIMENSION; PREDICTABILITY; MODEL; ATTRACTORS; COMPUTATION; CASCADE;
D O I
10.1103/PhysRevFluids.5.064608
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
By performing a large number of fully resolved simulations of incompressible homogeneous and isotropic two-dimensional turbulence, we study the scaling behavior of the maximal Lyapunov exponent, the Kolmogorov-Sinai entropy, and attractor dimension. The scaling of the maximal Lyapunov exponent is found to be in good agreement with the dimensional predictions. For the cases of the Kolmogorov-Sinai entropy and attractor dimension, the simple dimensional predictions are found to be insufficient. A dependence on the system size and the forcing length scale is found, suggesting nonuniversal behavior. The applicability of these results to atmospheric predictability is also discussed.
引用
收藏
页数:18
相关论文
共 68 条
[1]  
[Anonymous], 2012, THESIS
[2]  
Batchelor G.K., 1969, Phys. Fluids, V12, P233, DOI DOI 10.1063/1.1692443
[3]  
Batchelor G. K., 1953, The Theory of Homogeneous Turbulence
[4]   Critical transitions in thin layer turbulence [J].
Benavides, Santiago Jose ;
Alexakis, Alexandros .
JOURNAL OF FLUID MECHANICS, 2017, 822 :364-385
[5]  
Benettin G., 1980, MECCANICA, V15, P9, DOI 10.1007/BF02128236
[6]   ON THE MULTIFRACTAL NATURE OF FULLY-DEVELOPED TURBULENCE AND CHAOTIC SYSTEMS [J].
BENZI, R ;
PALADIN, G ;
PARISI, G ;
VULPIANI, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (18) :3521-3531
[7]   Information production in homogeneous isotropic turbulence [J].
Berera, Arjun ;
Clark, Daniel .
PHYSICAL REVIEW E, 2019, 100 (04)
[8]   Chaotic Properties of a Turbulent Isotropic Fluid [J].
Berera, Arjun ;
Ho, Richard D. J. G. .
PHYSICAL REVIEW LETTERS, 2018, 120 (02)
[9]  
Billingsley P., 2008, Probability and measure
[10]   Chaos and Predictability of Homogeneous-Isotropic Turbulence [J].
Boffetta, G. ;
Musacchio, S. .
PHYSICAL REVIEW LETTERS, 2017, 119 (05)