The N-Terminal Domain of SIRT1 Is a Positive Regulator of Endogenous SIRT1-Dependent Deacetylation and Transcriptional Outputs

被引:58
|
作者
Ghisays, Fiorella [1 ]
Brace, Cynthia S. [2 ]
Yackly, Shawn M. [1 ]
Kwon, Hyock Joo [1 ]
Mills, Kathryn F. [2 ]
Kashentseva, Elena [3 ]
Dmitriev, Igor P. [3 ]
Curiel, David T. [3 ]
Imai, Shin-ichiro [2 ]
Ellenberger, Tom [1 ]
机构
[1] Washington Univ, Sch Med, Dept Biochem & Mol Biophys, St Louis, MO 63110 USA
[2] Washington Univ, Sch Med, Dept Dev Biol, St Louis, MO 63110 USA
[3] Washington Univ, Sch Med, Dept Radiat Oncol, St Louis, MO 63110 USA
来源
CELL REPORTS | 2015年 / 10卷 / 10期
关键词
DNA-DAMAGE RESPONSE; ALLOSTERIC ACTIVATORS; NEGATIVE REGULATOR; GLUCOSE; PROTEIN; NAD(+); DBC1; DISEASE; CANCER; MICE;
D O I
10.1016/j.celrep.2015.02.036
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The NAD(+)-dependent protein deacetylase SIRT1 regulates energy metabolism, responses to stress, and aging by deacetylating many different proteins, including histones and transcription factors. The mechanisms controlling SIRT1 enzymatic activity are complex and incompletely characterized, yet essential for understanding how to develop therapeutics that target SIRT1. Here, we demonstrate that the N-terminal domain of SIRT1 (NTERM) can trans-activate deacetylation activity by physically interacting with endogenous SIRT1 and promoting its association with the deacetylation substrate NF-kappa B p65. Two motifs within the NTERM domain contribute to activation of SIRT1-dependent activities, and expression of one of these motifs in mice is sufficient to lower fasting glucose levels and improve glucose tolerance in a manner similar to overexpression of SIRT1. Our results provide insights into the regulation of SIRT1 activity and a rationale for pharmacological control of SIRT1-dependent activities.
引用
收藏
页码:1665 / 1673
页数:9
相关论文
共 50 条
  • [1] Brown Remodeling of White Adipose Tissue by SirT1-Dependent Deacetylation of Pparγ
    Qiang, Li
    Wang, Liheng
    Kon, Ning
    Zhao, Wenhui
    Lee, Sangkyu
    Zhang, Yiying
    Rosenbaum, Michael
    Zhao, Yingming
    Gu, Wei
    Farmer, Stephen R.
    Accili, Domenico
    CELL, 2012, 150 (03) : 620 - 632
  • [2] Active regulator of SIRT1 is required for cancer cell survival but not for SIRT1 activity
    Knight, John R. P.
    Allison, Simon J.
    Milner, Jo
    OPEN BIOLOGY, 2013, 3 (11)
  • [3] Hepatic menin recruits SIRT1 to control liver steatosis through histone deacetylation
    Cao, Yanan
    Xue, Ying
    Xue, Lu
    Jiang, Xiuli
    Wang, Xiaolin
    Zhang, Zhijian
    Yang, Jian
    Lu, Jieli
    Zhang, Changxian
    Wang, Weiqing
    Ning, Guang
    JOURNAL OF HEPATOLOGY, 2013, 59 (06) : 1299 - 1306
  • [4] Deacetylation of cortactin by SIRT1 promotes cell migration
    Zhang, Y.
    Zhang, M.
    Dong, H.
    Yong, S.
    Li, X.
    Olashaw, N.
    Kruk, P. A.
    Cheng, J. Q.
    Bai, W.
    Chen, J.
    Nicosia, S. V.
    Zhang, X.
    ONCOGENE, 2009, 28 (03) : 445 - 460
  • [5] Deacetylation of cortactin by SIRT1 promotes cell migration
    Y Zhang
    M Zhang
    H Dong
    S Yong
    X Li
    N Olashaw
    P A Kruk
    J Q Cheng
    W Bai
    J Chen
    S V Nicosia
    X Zhang
    Oncogene, 2009, 28 : 445 - 460
  • [6] Lysine deacetylation in ischaemic preconditioning: the role of SIRT1
    Nadtochiy, Sergiy M.
    Redman, Emily
    Rahman, Irfan
    Brookes, Paul S.
    CARDIOVASCULAR RESEARCH, 2011, 89 (03) : 643 - 649
  • [7] SIRT1 is a positive regulator of in vivo bone mass and a therapeutic target for osteoporosis
    Zainabadi, Kayvan
    Liu, Cassie J.
    Caldwell, Alison L. M.
    Guarente, Leonard
    PLOS ONE, 2017, 12 (09):
  • [8] A novel form of Deleted in breast cancer 1 (DBC1) lacking the N-terminal domain does not bind SIRT1 and is dynamically regulated in vivo
    Santos, Leonardo
    Colman, Laura
    Contreras, Paola
    Chini, Claudia C.
    Carlomagno, Adriana
    Leyva, Alejandro
    Bresque, Mariana
    Marmisolle, Ines
    Quijano, Celia
    Duran, Rosario
    Irigoin, Florencia
    Prieto-Echague, Victoria
    Vendelbo, Mikkel H.
    Sotelo-Silveira, Jose R.
    Chini, Eduardo N.
    Badano, Jose L.
    Calliari, Aldo J.
    Escande, Carlos
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [9] SIRT1 Mediates FOXA2 Breakdown by Deacetylation in a Nutrient-Dependent Manner
    van Gent, Rogier
    Di Sanza, Claudio
    van den Broek, Niels J. F.
    Fleskens, Veerle
    Veenstra, Aukje
    Stout, Gerdine J.
    Brenkman, Arjan B.
    PLOS ONE, 2014, 9 (05):
  • [10] The deacetylation of Foxk2 by Sirt1 reduces chemosensitivity to cisplatin
    Wang, Xi-wen
    Guo, Qi-qiang
    Yu, Yang
    Zhou, Ting-ting
    Zhang, Si-yi
    Wang, Zhuo
    Liu, Jing-wei
    Tang, Jun
    Jiang, Xiao-you
    Wang, Shan-shan
    Guo, Wen-dong
    Xu, Hong-de
    Sun, Hua-yi
    Li, Zi-wei
    Song, Xiao-yu
    Zhao, Jun-gang
    Cao, Liu
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2022, 26 (02) : 491 - 506