Efficient phase contrast imaging in STEM using a pixelated detector. Part II: Optimisation of imaging conditions

被引:124
作者
Yang, Hao [1 ]
Pennycook, Timothy J. [1 ,2 ]
Nellist, Peter D. [1 ,2 ]
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[2] SERC, Daresbury Lab, EPSRC SuperSTEM Facil, Warrington WA4 4AD, Cheshire, England
基金
英国工程与自然科学研究理事会;
关键词
Phase contrast; Pixelated detectors; Ptychography; Contrast transfer function; TRANSMISSION ELECTRON-MICROSCOPY; ATOMIC-RESOLUTION; X-RAY; SCATTERING;
D O I
10.1016/j.ultramic.2014.10.013
中图分类号
TH742 [显微镜];
学科分类号
摘要
In Part I of this series of two papers, we demonstrated the formation of a high efficiency phase contrast image at atomic resolution using a pixelated detector in the scanning transmission electron microscope (STEM) with ptychography. In this paper we explore the technique more quantitatively using theory and simulations. Compared to other STEM phase contrast modes including annular bright field (ABF) and differential phase contrast (DPC), we show that the ptychographic phase reconstruction method using pixelated detectors offers the highest contrast transfer efficiency and superior low dose performance. Applying the ptychographic reconstruction method to DPC segmented detectors also improves the detector contrast transfer and results in less noisy images than DPC images formed using difference signals. We also find that using a minimum array of 16 x 16 pixels is sufficient to provide the highest signal-to-noise ratio (SNR) for imaging beam sensitive weak phase objects. Finally, the convergence angle can be adjusted to enhance the contrast transfer based on the spatial frequencies of the specimen under study. (C) 2014 Elsevier B.V. All rights reserved
引用
收藏
页码:232 / 239
页数:8
相关论文
共 22 条
[1]   DIRECT DETERMINATION OF MAGNETIC DOMAIN-WALL PROFILES BY DIFFERENTIAL PHASE-CONTRAST ELECTRON-MICROSCOPY [J].
CHAPMAN, JN ;
BATSON, PE ;
WADDELL, EM ;
FERRIER, RP .
ULTRAMICROSCOPY, 1978, 3 (02) :203-214
[3]   MODIFIED DIFFERENTIAL PHASE-CONTRAST LORENTZ MICROSCOPY FOR IMPROVED IMAGING OF MAGNETIC-STRUCTURES [J].
CHAPMAN, JN ;
MCFADYEN, IR ;
MCVITIE, S .
IEEE TRANSACTIONS ON MAGNETICS, 1990, 26 (05) :1506-1511
[4]  
Cowley J.M., 1992, Electron Diffraction Techniques, V1
[5]  
DEKKERS NH, 1974, OPTIK, V41, P452
[6]   RELATIVISTIC HARTREE-FOCK X-RAY AND ELECTRON SCATTERING FACTORS [J].
DOYLE, PA ;
TURNER, PS .
ACTA CRYSTALLOGRAPHICA SECTION A-CRYSTAL PHYSICS DIFFRACTION THEORETICAL AND GENERAL CRYSTALLOGRAPHY, 1968, A 24 :390-&
[7]   Dynamics of annular bright field imaging in scanning transmission electron microscopy [J].
Findlay, S. D. ;
Shibata, N. ;
Sawada, H. ;
Okunishi, E. ;
Kondo, Y. ;
Ikuhara, Y. .
ULTRAMICROSCOPY, 2010, 110 (07) :903-923
[8]   THE POTENTIAL AND LIMITATIONS OF NEUTRONS, ELECTRONS AND X-RAYS FOR ATOMIC-RESOLUTION MICROSCOPY OF UNSTAINED BIOLOGICAL MOLECULES [J].
HENDERSON, R .
QUARTERLY REVIEWS OF BIOPHYSICS, 1995, 28 (02) :171-193
[9]   Efficient elastic imaging of single atoms on ultrathin supports in a scanning transmission electron microscope [J].
Hovden, Robert ;
Muller, David A. .
ULTRAMICROSCOPY, 2012, 123 :59-65
[10]   Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging [J].
Humphry, M. J. ;
Kraus, B. ;
Hurst, A. C. ;
Maiden, A. M. ;
Rodenburg, J. M. .
NATURE COMMUNICATIONS, 2012, 3