Large Time Behavior of the Vlasov-Navier-Stokes System on the Torus

被引:22
|
作者
Han-Kwan, Daniel [1 ]
Moussa, Ayman [2 ]
Moyano, Ivan [3 ]
机构
[1] Ecole Polytech, Inst Polytech Paris, Ctr Math Laurent Schwartz, UMR 7640, F-91128 Palaiseau, France
[2] Univ Paris, Sorbonne Univ, CNRS, LJLL, F-75005 Paris, France
[3] Univ Nice Sophia Antipolis, Lab JA Dieudonne, UMR7351, Parc Valrose, F-06108 Nice 02, France
基金
欧洲研究理事会;
关键词
GLOBAL EXISTENCE; WELL-POSEDNESS; AEROSOL FLOWS; EQUATIONS; DERIVATION; PARTICLES; LIMIT;
D O I
10.1007/s00205-020-01491-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the large time behavior of Fujita-Kato type solutions to the Vlasov-Navier-Stokes system set on T3xR3. Under the assumption that the initial so-called modulated energy is small enough, we prove that the distribution function converges to a Dirac mass in velocity, with exponential rate. The proof is based on the fine structure of the system and on a bootstrap analysis allowing us to get global bounds on moments.
引用
收藏
页码:1273 / 1323
页数:51
相关论文
共 50 条
  • [1] Large Time Behavior of the Vlasov–Navier–Stokes System on the Torus
    Daniel Han-Kwan
    Ayman Moussa
    Iván Moyano
    Archive for Rational Mechanics and Analysis, 2020, 236 : 1273 - 1323
  • [2] The hydrodynamic limit for the inhomogeneous Vlasov-Navier-Stokes system
    El Ghani, Najoua
    Mejri, Hassen
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2023, 34 (06)
  • [3] Global well-posedness and large-time behavior for the inhomogeneous Vlasov-Navier-Stokes equations
    Choi, Young-Pil
    Kwon, Bongsuk
    NONLINEARITY, 2015, 28 (09) : 3309 - 3336
  • [4] ASYMPTOTIC ANALYSIS FOR A VLASOV-NAVIER-STOKES SYSTEM IN A BOUNDED DOMAIN
    El Ghani, Najoua
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2010, 7 (02) : 191 - 210
  • [5] Concentration versus absorption for the Vlasov-Navier-Stokes system on bounded domains
    Ertzbischoff, Lucas
    Han-Kwan, Daniel
    Moussa, Ayman
    NONLINEARITY, 2021, 34 (10) : 6843 - 6900
  • [6] Uniqueness of the solution to the 2D Vlasov-Navier-Stokes system
    Han-Kwan, Daniel
    Miot, Evelyne
    Moussa, Ayman
    Moyano, Ivan
    REVISTA MATEMATICA IBEROAMERICANA, 2020, 36 (01) : 37 - 60
  • [7] THE VLASOV-NAVIER-STOKES EQUATIONS AS A MEAN FIELD LIMIT
    Flandoli, Franco
    Leocata, Marta
    Ricci, Cristiano
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (08): : 3741 - 3753
  • [8] Decay and Absorption for the Vlasov-Navier-Stokes System with Gravity in a Half-Space
    Ertzbischoff, Lucas
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2024, 73 (01) : 1 - 80
  • [9] Large-time behavior for the Vlasov/compressible Navier-Stokes equations
    Choi, Young-Pil
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (07)
  • [10] The Vlasov-Navier-Stokes System in a 2D Pipe: Existence and Stability of Regular Equilibria
    Glass, Olivier
    Han-Kwan, Daniel
    Moussao, Ayman
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 230 (02) : 593 - 639