3D printing of short fiber reinforced composites via material extrusion: Fiber breakage

被引:27
|
作者
Yang, Zhihe [1 ,2 ]
Yang, Zeshi [1 ,2 ]
Chen, Hui [1 ,2 ]
Yan, Wentao [1 ,2 ]
机构
[1] Natl Univ Singapore, Dept Mech Engn, Singapore 117575, Singapore
[2] NUS Res Inst NUSRI, Suzhou 215123, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Material extrusion; Chopped carbon fibers; Fiber breakage; Fiber orientation; Computational fluid dynamics; TENSILE-STRENGTH; CARBON; BEHAVIOR; PLA;
D O I
10.1016/j.addma.2022.103067
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Material extrusion (MEX) is a promising method to manufacture short fiber reinforced composites. However, the dynamic fiber flow process has not been well understood. This paper presents quantitative statistical analysis of the fiber breakage and orientation change during the MEX process and develops a simplified CFD model to understand the experimental phenomena. The PA66 polymer filaments reinforced with 20 wt% chopped carbon fibers, whose average length and diameter are 81 mu m and 5.5 mu m, are used in this experiment. X-ray mu CT scans are used to detect the fibers inside the polymer matrix. Fiber tracing method based on three-dimensional images is used to extract the fibers' length and orientation information. The results show that nozzle diameter has a great influence on fiber breakage, as a smaller nozzle outlet diameter induces higher shear rates and larger volume fraction of high shear rate regions inside the nozzle. A larger nozzle leads to less fiber breakage and better mechanical properties. When the layer height is set to be 0.15 mm, the average fiber length of the bead fabricated using 1.0 mm nozzle is 73.85 mu m, and that of the bead fabricated with 0.4 mm nozzle is only 63.55 mu m. The corresponding tensile strength and Young's modulus of them are 88.0 MPa, 2.53 GPa and 82.5 MPa, 2.36 GPa. The fibers with different lengths have different breakage ratios in different printing stages (extrusion and deposition), and the lengths of the fibers after breakage are mostly 30-50 mu m. The orientation of the fibers inside the deposited bead is related to the layer height. A larger layer height leads to better alignment in the nozzle moving direction but lower tensile strength and Young's modulus due to the higher porosity and less bonding area between layers. When using 1.0 mm nozzle, the average fiber tensors in the nozzle moving direction of the bead fabricated with layer height of 0.10 and 0.15 mm is 0.934, and that of the bead fabricated with layer height above 0.20 mm is about 0.960. The tensile strength and Young's modulus of the specimens fabricated with layer height of 0.10 mm are 89.3 MPa and 2.67 GPa, while that of the specimens fabricated with layer height of 0.30 mm can only reach 73.4 MPa and 2.08 GPa.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Continuous Carbon Fiber Reinforced SiC Ceramic Matrix Composites by Vertical Fiber Laying Combined with Material Extrusion 3D Printing
    Li, Zengchan
    Wang, Wenqing
    Gao, Xiong
    Shen, Chujing
    Wang, Gang
    He, Rujie
    ADVANCED ENGINEERING MATERIALS, 2024, 26 (12)
  • [2] 3D Printing of Short-Carbon-Fiber-Reinforced Thermoset Polymer Composites via Frontal Polymerization
    Ziaee, Morteza
    Johnson, James W.
    Yourdkhani, Mostafa
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (14) : 16694 - 16702
  • [3] 3D printing of fiber-reinforced soft composites: Process study and material characterization
    Spackman, Clayson C.
    Frank, Christopher R.
    Picha, Kyle C.
    Samuel, Johnson
    JOURNAL OF MANUFACTURING PROCESSES, 2016, 23 : 296 - 305
  • [4] Robotic 3D Printing of Continuous Fiber Reinforced Thermoset Composites
    Abdullah, Arif M.
    Dunn, Martin L.
    Yu, Kai
    ADVANCED MATERIALS TECHNOLOGIES, 2024,
  • [5] 3D printing of continuous fiber-reinforced thermoset composites
    He, Xu
    Ding, Yuchen
    Lei, Zepeng
    Welch, Sam
    Zhang, Wei
    Dunn, Martin
    Yu, Kai
    Additive Manufacturing, 2021, 40
  • [6] 3D printing of continuous fiber-reinforced thermoset composites
    He, Xu
    Ding, Yuchen
    Lei, Zepeng
    Welch, Sam
    Zhang, Wei
    Dunn, Martin
    Yu, Kai
    ADDITIVE MANUFACTURING, 2021, 40
  • [7] Design and 3D printing of continuous fiber reinforced heterogeneous composites
    Hou, Zhanghao
    Tian, Xiaoyong
    Zhang, Junkang
    Zhe, Lu
    Zheng, Ziqi
    Li, Dichen
    Malakhov, Andrei, V
    Polilov, Alexander N.
    COMPOSITE STRUCTURES, 2020, 237
  • [8] Printing process and application progress of 3D printing continuous fiber reinforced composites
    Cao F.
    Zeng Z.
    Huang J.
    Zhang F.
    Qian K.
    Li W.
    Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2023, 53 (11): : 1815 - 1833
  • [9] EFFECT OF EXTRUSION ON FIBER ORIENTATION AND BREAKAGE OF ALUMINAR SHORT-FIBER COMPOSITES
    KANG, CG
    KANG, SS
    JOURNAL OF COMPOSITE MATERIALS, 1994, 28 (02) : 155 - 166
  • [10] 3d printing of a continuous carbon fiber reinforced bronze-matrix composite using material extrusion
    Mousapour, Mehrdad
    Kumar, S. Siddharth
    Partanen, Jouni
    Salmi, Mika
    COMPOSITES PART B-ENGINEERING, 2025, 289