Nanopowders of holmium zirconate (Ho2Zr2O7) synthesised through carbon neutral sol-gel method were pressed into pellets and individually sintered for 2 h in a single step sintering (SSS) process from 1100 degrees C to 1500 degrees C at 100 degrees C interval and in a two step sintering (TSS) process at (I) -1500 degrees C for 5 min followed by (II) - 1300 degrees C for 96 h. Relative density of each of the sintered pellet was determined using the Archimedes' technique and the theoretical density was calculated from crystal structure data. Grain size was obtained from SEM micrographs using ImageJ. Pellets processed by TSS have been found to be denser (98 %) with less grain growth (1.29 mu m) as compared to the pellets processed using SSS process. Ionic conductivity of Ho2Zr2O7 pellets sintered by two different processes was measured using ac impedance spectroscopy technique over the temperature range of 350 degrees C-750 degrees C in the frequency range of 100 mHz-100 MHz for both heating and cooling cycles. The temperature dependence of bulk (2.67x10(-3) Scm(-) (1)) and grain boundary (2.50x10(-3) Scm(-1)) conductivities of Ho2Zr2O7 prepared by TSS process are greater than those processed by SSS process suggesting the strong influence of processing conditions and grain size. Results of this study, indicates that the TSS is the preferable route for processing the holmium zirconate as it can be sintered to exceptionally high densities at lower temperature, exhibits less grain growth and enhanced ionic conductivity compared with the samples processed by SSS process. Hence, holmium zirconate can be considered as a promising new oxide ion conducting solid electrolyte for intermediate temperature SOFC applications between 350 degrees C and 750 degrees C temperature range.