EXACT FORMULAS FOR COEFFICIENTS OF JACOBI FORMS

被引:8
作者
Bringmann, Kathrin [1 ]
Richter, Olav K. [2 ]
机构
[1] Univ Cologne, Inst Math, D-50931 Cologne, Germany
[2] Univ N Texas, Dept Math, Denton, TX 76203 USA
关键词
Jacobi forms; harmonic Maass-Jacobi forms; mock theta functions; FOURIER COEFFICIENTS; MODULAR-FORMS;
D O I
10.1142/S1793042111004617
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In previous work, we introduced harmonic Maass-Jacobi forms. The space of such forms includes the classical Jacobi forms and certain Maass-Jacobi-Poincare series, as well as Zwegers' real-analytic Jacobi forms, which play an important role in the study of mock theta functions and related objects. Harmonic Maass-Jacobi forms decompose naturally into holomorphic and non-holomorphic parts. In this paper, we give exact formulas for the Fourier coefficients of the holomorphic parts of harmonic Maass-Jacobi forms and, in particular, we obtain explicit formulas for the Fourier coefficients of weak Jacobi forms.
引用
收藏
页码:825 / 833
页数:9
相关论文
共 50 条
  • [31] Generating Jacobi forms
    Skogman, H
    RAMANUJAN JOURNAL, 2005, 10 (03) : 325 - 339
  • [32] Jacobi Maaß forms
    Ameya Pitale
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2009, 79 : 87 - 111
  • [33] A note on the characterizations of Jacobi cusp forms and cusp forms of Maass Spezialschar
    Kohnen, Winfried
    Lim, Jongryul
    RAMANUJAN JOURNAL, 2015, 37 (03) : 535 - 539
  • [34] Weyl invariant Jacobi forms: A new approach
    Wang, Haowu
    ADVANCES IN MATHEMATICS, 2021, 384
  • [35] On the space of slow growing weak Jacobi forms
    Keller, Christoph A.
    Quinones, Jason M.
    JOURNAL OF NUMBER THEORY, 2022, 240 : 730 - 750
  • [36] A characterization of Jacobi cusp forms of certain types
    Lim, Jongryul
    JOURNAL OF NUMBER THEORY, 2014, 141 : 278 - 287
  • [37] On Jacobi-Weierstrass mock modular forms
    Alfes, Claudia
    Funke, Jens
    Mertens, Michael H.
    Rosu, Eugenia
    ADVANCES IN MATHEMATICS, 2025, 465
  • [38] Jacobi forms and differential operators: Odd weights
    Das, Soumya
    Pal, Ritwik
    JOURNAL OF NUMBER THEORY, 2017, 179 : 113 - 125
  • [39] On the Petersson inner products of Fourier-Jacobi coefficients and Hecke eigenvalues of Siegel cusp forms
    Kumar, Balesh
    Paul, Biplab
    ACTA ARITHMETICA, 2021, 197 (01) : 21 - 35
  • [40] Asymptotic formulas for the coefficients of certain automorphic functions
    Meher, Jaban
    Deo Shankhadhar, Karam
    ACTA ARITHMETICA, 2015, 169 (01) : 59 - 76