bssm: Bayesian Inference of Non-linear and Non-Gaussian State Space Models in R

被引:0
|
作者
Helske, Jouni [1 ]
Vihola, Matti [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla, Finland
来源
R JOURNAL | 2021年 / 13卷 / 02期
基金
芬兰科学院;
关键词
ALGORITHMS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present an R package bssm for Bayesian non-linear/non-Gaussian state space modeling. Unlike the existing packages, bssm allows for easy-to-use approximate inference based on Gaussian approximations such as the Laplace approximation and the extended Kalman filter. The package also accommodates discretely observed latent diffusion processes. The inference is based on fully automatic, sampling post-correction to eliminate any approximation bias. The package also implements a direct pseudo-marginal MCMC and a delayed acceptance pseudo-marginal MCMC using intermediate approximations. The package offers an easy-to-use interface to define models with linear-Gaussian state dynamics with non-Gaussian observation models and has an Rcpp interface for specifying custom non-linear and diffusion models.
引用
收藏
页码:578 / 589
页数:12
相关论文
共 50 条
  • [31] Adjustment of non-linear models for drying in thin layer by bayesian inference
    de Oliveira, Ricardo Cardoso
    Rossi, Robson Marcelo
    Gimenes, Marcelino Luiz
    Davantel de Barros, Sueli Teresa
    ACTA SCIENTIARUM-TECHNOLOGY, 2014, 36 (02) : 263 - 269
  • [32] Locally robust inference for non-Gaussian SVAR models
    Hoesch, Lukas
    Lee, Adam
    Mesters, Geert
    QUANTITATIVE ECONOMICS, 2024, 15 (02) : 523 - 570
  • [33] Parameterisation and efficient MCMC estimation of non-Gaussian state space models
    Strickland, Chris M.
    Martin, Gael M.
    Forbes, Catherine S.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (06) : 2911 - 2930
  • [34] Monte Carlo estimation for nonlinear non-Gaussian state space models
    Jungbacker, Borus
    Koopman, Siem Jan
    BIOMETRIKA, 2007, 94 (04) : 827 - 839
  • [35] Posterior mode estimation for nonlinear and non-Gaussian state space models
    So, MKP
    STATISTICA SINICA, 2003, 13 (01) : 255 - 274
  • [36] Reliability Analysis via Non-Gaussian State-Space Models
    dos Santos, Thiago Rezende
    Gamerman, Dani
    Franco, Glaura da Conceicao
    IEEE TRANSACTIONS ON RELIABILITY, 2017, 66 (02) : 309 - 318
  • [37] PySSM : APython']Python Module for Bayesian Inference of Linear Gaussian State Space Models
    Strickland, Christopher M.
    Burdett, Robert L.
    Mengersen, Kerrie L.
    Denham, Robert J.
    JOURNAL OF STATISTICAL SOFTWARE, 2014, 57 (06): : 1 - 37
  • [38] Learning Linear Non-Gaussian Polytree Models
    Tramontano, Daniele
    Monod, Anthea
    Drton, Mathias
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 180, 2022, 180 : 1960 - 1969
  • [39] Bayesian Approach for Distribution System State Estimation With Non-Gaussian Uncertainty Models
    Pegoraro, Paolo Attilio
    Angioni, Andrea
    Pau, Marco
    Monti, Antonello
    Muscas, Carlo
    Ponci, Ferdinanda
    Sulis, Sara
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2017, 66 (11) : 2957 - 2966
  • [40] PARTIAL NON-GAUSSIAN STATE-SPACE
    SHEPHARD, N
    BIOMETRIKA, 1994, 81 (01) : 115 - 131